The GBAR antimatter gravity experiment


The GBAR project (Gravitational Behaviour of Anti hydrogen at Rest) at CERN, aims to measure the free fall acceleration of ultracold neutral anti hydrogen atoms in the terrestrial gravitational field. The experiment consists preparing anti hydrogen ions (one antiproton and two positrons) and sympathetically cooling them with Be + ions to less than 10 μK. The ultracold ions will then be photo-ionized just above threshold, and the free fall time over a known distance measured. We will describe the project, the accuracy that can be reached by standard techniques, and discuss a possible improvement to reduce the vertical velocity spread.

This is a preview of subscription content, access via your institution.


  1. 1.

    Adelberger, E.G., et al.: Does antimatter fall with the same acceleration as ordinary matter? Phys. Rev. Lett. 66, 850–853 (1991)

    Article  ADS  Google Scholar 

  2. 2.

    Goldman, T., et al.: Comment on does antimatter fall with the same acceleration as ordinary matter? Phys. Rev. Lett. 67, 1048 (1991)

    Article  ADS  Google Scholar 

  3. 3.

    Gabrielse, G., et al.: Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  4. 4.

    Pakvasa, S., Simmons, W. A., Weiler, T. J.: Test of equivalence principle for neutrinos and antineutrinos. Phys. Rev. D 39, 1761 (1989)

    Article  ADS  Google Scholar 

  5. 5.

    Amole, C., et al.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 4, 1785 (2013)

    Article  ADS  Google Scholar 

  6. 6.

    Kellerbauer, A., et al.: Proposed antimatter gravity measurement with an Antihydrogen Beam. Nucl. Instr. and Meth. B 266, 351–356 (2008)

    Article  ADS  Google Scholar 

  7. 7.

    Pérez, P., Rosowsky, A.: A New path toward gravity experiments with antihydrogen. Nucl. Instr. Meth. A 545, 20–30 (2005)

    Article  ADS  Google Scholar 

  8. 8.

    Walz, J., Hänsch, T.: A proposal to measure antimatter gravity using ultracold antihydrogen atoms. Gen. Relativ. Gravit. 36, 561–570 (2004)

    MATH  Article  ADS  Google Scholar 

  9. 9.

    Comini, P., Hervieux, P-A.: \(\mathrm {\overline {H}^{+}}\)ion production from collisions between antiprotons and excited positronium: cross sections calculations in the framework of the GBAR experiment. New J. Phys. 15, 095022 (2013)

    Article  ADS  Google Scholar 

  10. 10.

    Comini, P., et al.: \(\mathrm {\overline {H}^{+}}\)production from collisions between positronium and kev antiprotons for GBAR. Hyp. Int. 228, 159–165 (2014)

    Article  Google Scholar 

  11. 11.

    Chardin, G., et al.: GBAR, Proposal to Measure the Gravitational Behaviour of Antihydrogen at Rest, CERN-SPSC-P-342, 30/09/2011

  12. 12.

    Carli, C.: see proceedings in this conference

  13. 13.

    Cassidy, D.B., et al.: Positronium cooling in porous silica measured via doppler spectroscopy. Phys. Rev. A 81, 012715 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. 14.

    Crivelli, P., et al.: Measurement of the Ortho-positronium Confinement Energy in Mesoporous Thin Films. Phys. Rev. A 81, 052703 (2010)

    Article  ADS  Google Scholar 

  15. 15.

    Crivelli, P., et al.: Experimental considerations for testing antimatter antigravity using positronium 1S-2S spectroscopy. Int. J. Mod. Phys. Conf. Ser. 30, 1460257 (2014)

    Article  Google Scholar 

  16. 16.

    Comini, P.: PhD thesis, Université Paris 6, to be published

  17. 17.

    Oshima, N., et al.: New scheme for positron accumulation in ultrahigh vacuum. Phys. Rev. Lett. 93, 195001 (2004)

    Article  ADS  Google Scholar 

  18. 18.

    Dupré, P.: A new scheme to accumulate positrons in a penning-malmberg trap with a linac-based positron pulsed source. AIP Conf. Proc. 1521, 113 (2013)

    Article  ADS  Google Scholar 

  19. 19.

    Grandemange, P., et al.: First results of a new positron-accumulation scheme using an electron linac and a penning-malmberg trap. J. Phys.: Conf. Ser. 505, 012035 (2014)

    ADS  Google Scholar 

  20. 20.

    Hilico, L., et al.: Preparing single ultra-cold antihydrogen atoms for the free-fall in GBAR. Int. J. Mod. Phys: Conf. Ser. 30, 1460269 (2014)

    Google Scholar 

  21. 21.

    Procureur, S., et al.: Genetic Multiplexing and First Results with a 50×50cm 2 Micromegas, NIM A, 729, 888 (2013)

  22. 22.

    Dufour, G., et al.: Shaping the distribution of vertical velocities of antihydrogen in GBAR. Eur. Phys. J. C 74, 2731 (2014)

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Pérez.

Additional information

Proceedings of the International Conference on Exotic Atoms and Related Topics (EXA 2014), Vienna, Austria, 15-19 September 2014

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, P., Banerjee, D., Biraben, F. et al. The GBAR antimatter gravity experiment. Hyperfine Interact 233, 21–27 (2015).

Download citation


  • Antimatter
  • Gravity
  • Antihydrogen
  • Positronium


  • 04.80.Cc
  • 07.77.Ka,
  • 29.25.-t
  • 41.75.Fr