Hyperfine Interactions

, Volume 233, Issue 1–3, pp 21–27 | Cite as

The GBAR antimatter gravity experiment

  • P. Pérez
  • D. Banerjee
  • F. Biraben
  • D. Brook-Roberge
  • M. Charlton
  • P. Cladé
  • P. Comini
  • P. Crivelli
  • O. Dalkarov
  • P. Debu
  • A. Douillet
  • G. Dufour
  • P. Dupré
  • S. Eriksson
  • P. Froelich
  • P. Grandemange
  • S. Guellati
  • R. Guérout
  • J. M. Heinrich
  • P.-A. Hervieux
  • L. Hilico
  • A. Husson
  • P. Indelicato
  • S. Jonsell
  • J.-P. Karr
  • K. Khabarova
  • N. Kolachevsky
  • N. Kuroda
  • A. Lambrecht
  • A. M. M. Leite
  • L. Liszkay
  • D. Lunney
  • N. Madsen
  • G. Manfredi
  • B. Mansoulié
  • Y. Matsuda
  • A. Mohri
  • T. Mortensen
  • Y. Nagashima
  • V. Nesvizhevsky
  • F. Nez
  • C. Regenfus
  • J.-M. Rey
  • J.-M. Reymond
  • S. Reynaud
  • A. Rubbia
  • Y. Sacquin
  • F. Schmidt-Kaler
  • N. Sillitoe
  • M. Staszczak
  • C. I. Szabo-Foster
  • H. Torii
  • B. Vallage
  • M. Valdes
  • D. P. Van der Werf
  • A. Voronin
  • J. Walz
  • S. Wolf
  • S. Wronka
  • Y. Yamazaki
Article

Abstract

The GBAR project (Gravitational Behaviour of Anti hydrogen at Rest) at CERN, aims to measure the free fall acceleration of ultracold neutral anti hydrogen atoms in the terrestrial gravitational field. The experiment consists preparing anti hydrogen ions (one antiproton and two positrons) and sympathetically cooling them with Be+ ions to less than 10 μK. The ultracold ions will then be photo-ionized just above threshold, and the free fall time over a known distance measured. We will describe the project, the accuracy that can be reached by standard techniques, and discuss a possible improvement to reduce the vertical velocity spread.

Keywords

Antimatter Gravity Antihydrogen Positronium 

PACS

04.80.Cc 07.77.Ka, 29.25.-t 41.75.Fr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelberger, E.G., et al.: Does antimatter fall with the same acceleration as ordinary matter? Phys. Rev. Lett. 66, 850–853 (1991)CrossRefADSGoogle Scholar
  2. 2.
    Goldman, T., et al.: Comment on does antimatter fall with the same acceleration as ordinary matter? Phys. Rev. Lett. 67, 1048 (1991)CrossRefADSGoogle Scholar
  3. 3.
    Gabrielse, G., et al.: Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Pakvasa, S., Simmons, W. A., Weiler, T. J.: Test of equivalence principle for neutrinos and antineutrinos. Phys. Rev. D 39, 1761 (1989)CrossRefADSGoogle Scholar
  5. 5.
    Amole, C., et al.: Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 4, 1785 (2013)CrossRefADSGoogle Scholar
  6. 6.
    Kellerbauer, A., et al.: Proposed antimatter gravity measurement with an Antihydrogen Beam. Nucl. Instr. and Meth. B 266, 351–356 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Pérez, P., Rosowsky, A.: A New path toward gravity experiments with antihydrogen. Nucl. Instr. Meth. A 545, 20–30 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Walz, J., Hänsch, T.: A proposal to measure antimatter gravity using ultracold antihydrogen atoms. Gen. Relativ. Gravit. 36, 561–570 (2004)MATHCrossRefADSGoogle Scholar
  9. 9.
    Comini, P., Hervieux, P-A.: \(\mathrm {\overline {H}^{+}}\)ion production from collisions between antiprotons and excited positronium: cross sections calculations in the framework of the GBAR experiment. New J. Phys. 15, 095022 (2013)CrossRefADSGoogle Scholar
  10. 10.
    Comini, P., et al.: \(\mathrm {\overline {H}^{+}}\)production from collisions between positronium and kev antiprotons for GBAR. Hyp. Int. 228, 159–165 (2014)CrossRefGoogle Scholar
  11. 11.
    Chardin, G., et al.: GBAR, Proposal to Measure the Gravitational Behaviour of Antihydrogen at Rest, CERN-SPSC-P-342, 30/09/2011Google Scholar
  12. 12.
    Carli, C.: see proceedings in this conferenceGoogle Scholar
  13. 13.
    Cassidy, D.B., et al.: Positronium cooling in porous silica measured via doppler spectroscopy. Phys. Rev. A 81, 012715 (2010)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Crivelli, P., et al.: Measurement of the Ortho-positronium Confinement Energy in Mesoporous Thin Films. Phys. Rev. A 81, 052703 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Crivelli, P., et al.: Experimental considerations for testing antimatter antigravity using positronium 1S-2S spectroscopy. Int. J. Mod. Phys. Conf. Ser. 30, 1460257 (2014)CrossRefGoogle Scholar
  16. 16.
    Comini, P.: PhD thesis, Université Paris 6, to be publishedGoogle Scholar
  17. 17.
    Oshima, N., et al.: New scheme for positron accumulation in ultrahigh vacuum. Phys. Rev. Lett. 93, 195001 (2004)CrossRefADSGoogle Scholar
  18. 18.
    Dupré, P.: A new scheme to accumulate positrons in a penning-malmberg trap with a linac-based positron pulsed source. AIP Conf. Proc. 1521, 113 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Grandemange, P., et al.: First results of a new positron-accumulation scheme using an electron linac and a penning-malmberg trap. J. Phys.: Conf. Ser. 505, 012035 (2014)ADSGoogle Scholar
  20. 20.
    Hilico, L., et al.: Preparing single ultra-cold antihydrogen atoms for the free-fall in GBAR. Int. J. Mod. Phys: Conf. Ser. 30, 1460269 (2014)Google Scholar
  21. 21.
    Procureur, S., et al.: Genetic Multiplexing and First Results with a 50×50cm 2 Micromegas, NIM A, 729, 888 (2013)Google Scholar
  22. 22.
    Dufour, G., et al.: Shaping the distribution of vertical velocities of antihydrogen in GBAR. Eur. Phys. J. C 74, 2731 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • P. Pérez
    • 1
  • D. Banerjee
    • 2
  • F. Biraben
    • 3
  • D. Brook-Roberge
    • 1
  • M. Charlton
    • 4
  • P. Cladé
    • 3
  • P. Comini
    • 1
  • P. Crivelli
    • 2
  • O. Dalkarov
    • 5
  • P. Debu
    • 1
  • A. Douillet
    • 10
  • G. Dufour
    • 3
  • P. Dupré
    • 6
  • S. Eriksson
    • 4
  • P. Froelich
    • 7
  • P. Grandemange
    • 6
  • S. Guellati
    • 3
  • R. Guérout
    • 3
  • J. M. Heinrich
    • 3
  • P.-A. Hervieux
    • 8
  • L. Hilico
    • 10
  • A. Husson
    • 6
  • P. Indelicato
    • 3
  • S. Jonsell
    • 9
  • J.-P. Karr
    • 10
  • K. Khabarova
    • 5
  • N. Kolachevsky
    • 5
  • N. Kuroda
    • 11
  • A. Lambrecht
    • 3
  • A. M. M. Leite
    • 1
  • L. Liszkay
    • 1
  • D. Lunney
    • 6
  • N. Madsen
    • 4
  • G. Manfredi
    • 8
  • B. Mansoulié
    • 1
  • Y. Matsuda
    • 11
  • A. Mohri
    • 12
  • T. Mortensen
    • 6
  • Y. Nagashima
    • 13
  • V. Nesvizhevsky
    • 14
  • F. Nez
    • 3
  • C. Regenfus
    • 2
  • J.-M. Rey
    • 1
  • J.-M. Reymond
    • 1
  • S. Reynaud
    • 3
  • A. Rubbia
    • 2
  • Y. Sacquin
    • 1
  • F. Schmidt-Kaler
    • 15
  • N. Sillitoe
    • 3
  • M. Staszczak
    • 16
  • C. I. Szabo-Foster
    • 3
  • H. Torii
    • 11
  • B. Vallage
    • 1
  • M. Valdes
    • 8
  • D. P. Van der Werf
    • 4
  • A. Voronin
    • 5
  • J. Walz
    • 15
  • S. Wolf
    • 15
  • S. Wronka
    • 16
  • Y. Yamazaki
    • 17
  1. 1.Institut de Recherches sur les lois Fondamentales de l’UniversCEA SaclayFrance
  2. 2.Institute for Particle Physics, ETH ZürichZürichSwitzerland
  3. 3.Laboratoire Kastler Brossel, Collège de FranceUPMC-Sorbonne Universités, CNRS, ENS-PSL Research UniversityParisFrance
  4. 4.Department of PhysicsSwansea UniversitySwanseaUK
  5. 5.P. N. Lebedev Physical InstituteMoscowRussia
  6. 6.Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS : UMR8609 – IN2P3 – UniversitèParis Sud - Paris XIFrance
  7. 7.Department of Chemistry ÅngströmUppsala UniversityUppsalaSweden
  8. 8.Institut de Physique et Chimie des Matériaux de StrasbourgStrasbourgFrance
  9. 9.Department of PhysicsStockholm UniversityStockholmSweden
  10. 10.Laboratoire Kastler Brossel, Collége de FranceUniversité d’Evry Val d’Essonne, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research UniversityParisFrance
  11. 11.Institute of PhysicsUniversity of TokyoTokyoJapan
  12. 12.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  13. 13.Department of PhysicsTokyo University of ScienceTokyoJapan
  14. 14.Institut Max von Laue - Paul Langevin (ILL)GrenobleFrance
  15. 15.Johannes Gutenberg UniversitätMainzGermany
  16. 16.Narodowe Centrum Badaǹ Jądrowych ul. Andrzeja SołtanaŚwierkPoland
  17. 17.Atomic Physics Laboratory, RIKENSaitamaJapan

Personalised recommendations