Skip to main content
Log in

Muons as hyperfine interaction probes in chemistry

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brewer, J.: μSR HOW TO. Hyperfine Interactions. in press (2014)

  2. Ghandi, K., Miyake, Y.: Muon Interactions with Matter. In: Mozumder, A., Hatano, Y (eds.) Charged Particle and Photon Interactions with Matter, Advances, Applications, and Interfaces, pp. Taylor & Francis (2011)

  3. McKenzie, I., Ghandi, K., Kecman, S., Percival, P.W.: Formation and spectroscopy of alpha-muoniated radicals. Phys. B 326, 76 (2003)

    Article  ADS  Google Scholar 

  4. McKenzie, I., Brodovitch, J.-C., Ghandi, K.: Hyperfine coupling in methyl radical Isotopomers. J. Phys. Chem. A 42, 10625 (2007)

    Article  Google Scholar 

  5. Johnson, H.S.: Reaction Theory. Ronald Press (1965)

  6. Kleinekathofer, U., Tang, K.T., Toennies, J.P., Yie, C.L.: The generalized Heitler-London theory for the H-3 potential energy surface. J. Chem. Phys. 111, 3377 (1999)

    Article  ADS  Google Scholar 

  7. Yang, X.: Probing state-to-state reaction dynamics using H-atom Rydberg tagging time-of-flight spectroscopy. PCCP 13, 8112 (2011)

    Article  ADS  Google Scholar 

  8. Wang, X., Bowman, J.M.: Mode-specific tunneling in the unimolecular dissociation of cis-HOCO to H+CO2. J. Phys. Chem. A 118, 684 (2014)

    Article  Google Scholar 

  9. Fleming, D.G., Arseneau, D.J., Sukhorukov, O., Brewer, J.H., Mielke, S.L., Schatz, G.C., Truhlar, D.G.: Kinetic isotope effects for the reactions of muonic helium and muonium with H 2. Science 331, 448 (2011)

    Article  ADS  Google Scholar 

  10. Alcorn, C.D., Brodovitch, J.-C., Percival, P.W., Smith, M., Ghandi, K.: Kinetics of the reaction between H ⋅ and superheated water probed with muonium. J. Chem. Phys. 435, 29 (2014)

    Google Scholar 

  11. Ghandi, K., Cottrell, S.P., Fleming, D.G., Johnson, C.: The first report of a muoniated free radical formed from reaction of Mu with Br 2. Phys. B 374, 303–306 (2006)

    Article  ADS  Google Scholar 

  12. Johnson, C., Cottrell, S.P., Ghandi, K., Fleming, D.G.: Muonium and muon molecular ions in inert gases studied by ? SR. J. Phys. B: At. Mol. Opt. Phys. 38, 119–134 (2005)

    Article  ADS  Google Scholar 

  13. Fleming, D.G., Manz, J., Sato, K., Takayanagi, T.: Fundamental change in the nature of chemical bonding by isotopic substitution. Angewandte Chemie International Edition, doi:10.1002/anie.201408211/abstract (2014)

  14. Cormier, P., Clarke, R., McFadden, R., Ghandi, K.: Selective free radical reactions using supercritical carbon dioxide. JACS 136(6), 2200–2203 (2014)

    Article  Google Scholar 

  15. Ghandi, K., McFadden, R., Satija, P., Cormier, P., Smith, M.: Radical kinetics in sub- and supercritical carbon dioxide: thermodynamic rate tuning. Phys. Chem. Chem. Phys. 14, 8502–8505 (2012)

    Article  Google Scholar 

  16. Flores-Moreno, R., et al.: The any particle molecular orbital code. Int. J. Quantum Chem. 114(1), 50–56 (2014)

    Article  Google Scholar 

  17. Hudson et al.: Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C6H7 and C6H6Mu: beyond the bond length change approximation. Molecules 18, 4906–4916 (2013)

  18. Albu, T., Espinosa-Garcia, J., Truhlar, D.G.: Computational chemistry of polyatomic reaction kinetics and dynamics. Chem. Inform. 4, 39 (2008)

    Google Scholar 

  19. Pan, J.J., Arseneau, D.J., Senba, M., Fleming, D.G., Himmer, U., Suzuki, Y.: Measurements of Mu + NO termolecular kinetics up to 520 bar: isotope effects and the Troe theory. Phys. Chem. Chem. Phys. 2, 621 (2000)

    Article  Google Scholar 

  20. Ghandi, K., Clark, I.P., Lord, J.S., Cottrell, S.P.: Laser-muon spin spectroscopy in liquids—A technique to study the excited state chemistry of transients. Phys. Chem. Chem. Phys. 9, 353–359 (2007)

    Article  Google Scholar 

  21. Bakule, P., Fleming, D.G., Sukhorukov, O., Ishida, K., Pratt, F., Momose, T., Truhlar, D.G: State-selected reaction of muonium with vibrationally excited H2. J. Phys. Chem. Let. 3.19, 2755–2760 (2012)

    Article  Google Scholar 

  22. Grossiord, N., et al.: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13.3, 432–456 (2012)

    Article  Google Scholar 

  23. Jambrina, P., Garcia, E.: Dynamics of the reactions of muonium and deuterium atoms with vibrationally excited hydrogen molecules: tunneling and vibrational adiabaticity. J. Phys. Chem. A 14(42), 14596–604 (2012)

    Google Scholar 

  24. Jambrina, P.G., García, E., Herrero, V.J., Sáez-Rábanos, V., Aoiz, F.J.: Can quasiclassical trajectory calculations reproduce the extreme kinetic isotope effect observed in the muonic isotopologues of the H=H2 reaction?. J. Chem. Phys. 135(3), 034310 (2011)

    Article  ADS  Google Scholar 

  25. Aldegunde, J., Jambrina, P.G., García, E., Herrero, V.J., Sáez-Rábanos, V., Aoiz, F.J.: Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity. Mol. Phys. 111(21), 3169–3181 (2013)

    Article  Google Scholar 

  26. Stephanie, M.V., Huynh, L.K., Carstensen, H.H., Dean, A.M.: High-pressure rate rules for alkyl + O 2 reactions. J. Phys. Chem. A 115, 13425–13442 (2011)

    Article  Google Scholar 

  27. LeBlanc, R., Hackman, B., Liu, G., Ghandi, K.: Extrapolation of rate constants of reactions producing H 2 and O 2 in radiolysis of water at high temperatures, PBNC (In press)

  28. Ghandi, K., Alcorn, C.D., Legate, G., Percival, P.W., Brodovitch, J.-C.: Chemical Kinetics in H 2O and D 2O under Hydrothermal Conditions. In: Proceedings of the second Canada-China Joint Conference on Supercritical Water-Cooled Reactors, 88–103 (2010)

  29. Percival, P.W., Brodovitch, J.-C., Ghandi, K., McCollum, B., McKenzie, I.: H atom kinetics in superheated water studied by muon spin spectroscopy. Radiat. Phys. Chem. 76, 1231–1235 (2007)

    Article  ADS  Google Scholar 

  30. Ghandi, K., Addison-Jones, B., Brodovitch, J.-C., Kecman, S., McKenzie, I., Percival, P.W.: Muonium kinetics in sub- and supercritical water. Phys. B 326, 76–80 (2003)

    Article  ADS  Google Scholar 

  31. Ghandi, K., Percival, P.W.: Prediction of rate constants for reactions of the hydroxyl radical in water at high temperatures and pressures. J. Phys. Chem. A 107, 3005–3009 (2003)

    Article  Google Scholar 

  32. Ghandi, K., Brodovitch, J.-C., Addison-Jones, B., McKenzie, I., Percival, P.W., Schüth, J.: Near diffusion-controlled reactions of muonium in supercritical water. Phys. Chem. Chem. Phys. 4, 586–595 (2002)

    Article  Google Scholar 

  33. Alcorn, C., Smith, M., Kennedy, A., Brodovitch, J.-C., Ghandi, K., Percival, P.W.: Kinetics of the Reaction between H ⋅ and Superheated Water Probed with Muonium.. In: Proceedings of International Symposium of the Supercritical Water Reactors (ISSCWR-5), pp 130–131 (2011)

  34. Pérez de Tudela, R., Aoiz, F.J., Suleimanov, Y.V., Manolopoulos, D.E.: Chemical reaction rates from ring polymer molecular dynamics: Zero point energy conservation in Mu \(+ \mathrm {H}_{2} \rightarrow \text {MuH} +\) H. J. Phys. Chem. Lett. 3(4), 493–497 (2012)

    Article  Google Scholar 

  35. Duffey, R.B.: Sustainable futures using nuclear energy. Prog. Nucl. Energy 47(1–4), 535–543 (2005)

    Article  Google Scholar 

  36. Ashton, T.E., et al.: Muon studies of Li + diffusion in LiFePO4 nanoparticles of different polymorphs. J. Mater. Chem. A 2, 6238–6245 (2014)

    Article  Google Scholar 

  37. Sugiyama, J., et al.: Reactive surface area of the Li x (Co 1/3Ni 1/3Mn 1/3)O 2 electrode determined by μ+SR and electrochemical measurements. Phys. Chem. Chem. Phys. 15, 10402–10412 (2013)

    Article  MathSciNet  Google Scholar 

  38. Safriani, L., et al.: Charge carrier dynamics of active material solar cell P3HT:ZnO nanoparticles studied by muon spin relaxation (μSR). Adv. Mat. Res. 896, 477–480 (2014)

    Article  Google Scholar 

  39. Janik, I., Bartels, D.M., Marin, T.W., Jonah, C.D.: Reaction of O 2 with the hydrogen atom in water up to 350 degrees C. J. Phys. Chem. A 111(1), 79–88 (2007)

    Article  Google Scholar 

  40. Korzekwa, K.: Enzyme kinetics of oxidative metabolism: Cytochromes P450. Methods Mol. Biol. 113(4), 149–166 (2014)

    Article  Google Scholar 

  41. Gao, Y., et al.: Drug enterohepatic circulation and disposition: constituents of systems pharmacokinetics. Drug Discov. Today 19(3), 326 (2014)

    Article  Google Scholar 

  42. Cox, S.F.J., et al.: The first 25 years of semiconductor muonics at ISIS, modelling the electrical activity of hydrogen in inorganic semiconductors and high- κ dielectrics. Phys. Scr. 88(6), 068503 (2013)

    Article  ADS  Google Scholar 

  43. Farren-Dai, M., et al.: A novel gold nanoparticle stability and its muon chemistry. Chem. Phys. Lett. 610, 331–334 (2014)

    Article  ADS  Google Scholar 

  44. Connell, S.H., Bharuth-Ram, K., Cox, S.F.J., Keartland, J.M.: μSR in diamond. Hyperfine Interact. 198, 117 (2010)

    Article  ADS  Google Scholar 

  45. Meier, P.F.: Muonium in diamond. Phys. Rev. A 25, 3 (2001)

    Google Scholar 

  46. Duty, T.L., Brewer, J.H., Chow, K., Kiefl, R.F., MacFarlane, A.W., Morris, G.D., Schneider, J.W., Hitti, B., Lichti, R., Brard, L., Fischer, J.E., Smith III, A.B., Strongin, R.M.: Zero-field μSR in crystalline C 60. Hyperfine Interact. 86, 789 (1994)

    Article  ADS  Google Scholar 

  47. Ghandi, K., Arseneau, D.J., Bridges, M., Fleming, D.: Muonium formation as a probe of radiation chemistry in supercritical CO 2. J. Phys. Chem. A 52, 11613 (2004)

    Article  Google Scholar 

  48. Ghandi, K., Brodovitch, J.-C., Addison-Jones, B., Percival, P.W.: Hyperfine coupling constant of muonium in sub- and supercritical water. Phys. B 289, 476 (2004)

    ADS  Google Scholar 

  49. Prokof’ev, N.V.: Inhomogeneous quantum diffusion of muons in solids. Hyperfine Interact. 85(1), 3 (1994)

    Article  ADS  Google Scholar 

  50. Kadono, R.: Quantum diffusion of positive muons and muonium atoms. Curr. Opinion Solid State Mater. Sci. 6, 141 (2002)

    Article  ADS  Google Scholar 

  51. Percival, P.W., Addison-Jones, B., Brodovitch, J.-C., Sun-Mack, S.: Radio-frequency muon spin resonance studies of endohedral and exohedral muonium adducts of fullerenes. Appl. Magn. Reson. 11(2), 315 (1996)

    Article  Google Scholar 

  52. Percival, P.W., Mozafari, M., Brodovitch, J.-C., Chandrasena, L.: Organic free radicals in clathrate hydrates investigated by muon spin spectroscopy. J. Phys. Chem. A 118, 1162 (2014)

    Article  Google Scholar 

  53. McKenzie, I., et al.: Hyperfine coupling constants of the cyclohexadienyl radical in benzene and dilute aqueous solution. J. Phys. Chem. B 117, 13614–13618 (2013)

    Article  Google Scholar 

  54. McKenzie, I., et al.: Muon spin spectroscopy of ferrocene: characterization of muoniated ferrocenyl radicals. Phys. Chem. Chem. Phys. 16, 10600–10606 (2014)

    Article  MathSciNet  Google Scholar 

  55. Brodovitch, J.-C., Addison-Jones, B., Ghandi, K., McKenzie, I., Percival, P.W., Schüth, J.: Free radicals formed by H(Mu) addition to fluoranthene. Can. J. Chem. 81(1), 1 (2003)

    Article  Google Scholar 

  56. Cormier, P., Arseneau, D.J., Brodovitch, K.C., Lauzon, J.M., Taylor, B.A., Ghandi, K.: Free radical formation in supercritical CO 2, using muonium as a probe and implication for H atom reaction with ethene. J. Phys. Chem. A 112(20), 4593–4600 (2008)

    Article  Google Scholar 

  57. Cormier, P., Taylor, B., Ghandi, K.: Hyperfine interactions of a muoniated ethyl radical in supercritical CO 2. Phys. B Condens. Matter 404(5–7), 930–932 (2009)

    Article  ADS  Google Scholar 

  58. West, R., Samedov, K., Percival, P.W.: Silicon meets cyclotron: muon spin resonance of organosilicon radicals. Chem. Eur. J. 20, 9184 (2014)

    Article  Google Scholar 

  59. Percival, P.W., McCollum, B.M., Brodovitch, J.-C., Driess, M., Mitra, A., Mozafari, M., West, R., Xiong, Y., Yao, S.: Dual reactivity of a stable zwitterionic N-heterocyclic silylene and its carbene complex probed with muonium. Organometallics 31, 2709 (2012)

    Article  Google Scholar 

  60. West, R., et al.: Germanium-centered free radicals studied by muon spin spectroscopy. Can. J. Chem. 92, 508–513 (2014)

    Article  Google Scholar 

  61. McCollum, B.M., Brodovitch, J.-C., Clyburne, J.A.C., Percival, P.W., West R: Physica B 404, 940–942 (2009)

    Article  ADS  Google Scholar 

  62. McCollum, B.M., Abe, T., Brodovitch, J.-C., Clyburne, J.A.C., Iwamoto, T., Kira, M., Percival, P.W., West, R.: Angew. Chem. 120, 9918–9920 (2008); Angew. Chem. Int. Ed. 47, 9772–9774 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khashayar Ghandi.

Additional information

Proceedings of the 5th Joint International Conference on Hyperfine Interactions and International Symposium on Nuclear Quadrupole Interactions (HFI/NQI 2014), Canberra, Australia, 21–26 September 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandi, K., MacLean, A. Muons as hyperfine interaction probes in chemistry. Hyperfine Interact 230, 17–34 (2015). https://doi.org/10.1007/s10751-014-1121-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-014-1121-9

Keywords

Navigation