Skip to main content
Log in

Palladium-defect complexes in diamond and silicon carbide

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Time Differential Perturbed Angular Correlations (TDPAC) studies, supported by Density Functional Theory (DFT) modelling, have shown that palladium atoms in silicon and germanium pair with vacancies. Building on these results, here we present DFT predictions and some tentative TDPAC results on palladium-defect complexes and site locations of palladium impurities in diamond and silicon carbide. For both diamond and silicon carbide, the DFT calculations predict that a split-vacancy V-PdBI-V complex is favoured, with the palladium atom on a bond-centred interstitial site having a nearest-neighbour semi-vacancy on either side. Consistent with experimental results, this configuration is also assigned to palladium complexes in silicon and germanium. For silicon carbide, the DFT modelling predicts furthermore that a palladium atom in replacing a carbon atom moves to a bond-centred interstitial site and pairs with a silicon vacancy to form a complex that is more stable than that of a palladium atom which replaces a silicon atom and then moves to a bond-centred interstitial site pairings with a carbon vacancy. These two competing alternatives differ by 8.94 eV. The favourable pairing with a silicon vacancy is also supported independently by TRIM Monte Carlo calculations, which predict that more silicon vacancies than carbon vacancies are created during heavy ion. implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schulz, M.: Nature (London) 399, 729 (1999)

    Article  ADS  Google Scholar 

  2. Waldner, J.-B.: Nanocomputers and swarm intelligence. London: ISTE. pp. 44–45. ISBN 978-1-84821-009-7 (2008)

  3. Keyes, R.W.: Rep. Prog. Phys. 68, 2701 (2005)

    Article  ADS  Google Scholar 

  4. Buniatyan, V.V., Aroutiounian, V.M.: J. Phys. D 40, 6355 (2007)

    Article  ADS  Google Scholar 

  5. Willander, M., et al.: J. Mat. Sci.: Mat. Elect. 17 (2006). 4 Y. Gurbuz, O. Esame, I. Tekin

  6. In: Takahashi, K., Yoshikawa, A., Sandhu, A. (eds.): Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices. Springer, Berlin (2007)

  7. Dutt, M.V.G., L. et al.: Science 316, 1312 (2007)

    Article  Google Scholar 

  8. Khajetoorians, A.A., et al.: Nature (London) 467, 1084 (2010)

    Article  ADS  Google Scholar 

  9. Hudgins, J.L., et al.: IEEE Trans. Power Electr. 18, 907 (2003)

    Article  Google Scholar 

  10. Wort, C.J.H., Balmer, R.S.: Mater. Today 11, 22 (2008)

    Article  Google Scholar 

  11. In: Ricardo, S.S. (ed.) : CVD Diamond for Electronic Devices and Sensors. Wiley (2009). L td. ISBN: 978-0-470-06532-7

  12. Willander M., et al: J Mater Sci.: Mater Electron 17, 1 (2006)

    Google Scholar 

  13. Schneider, J., Maier, K.: Phys. B 185, 199 (1993)

    Article  ADS  Google Scholar 

  14. Kunzer, M., Müller, H.D., Kaufmann, U.: Phys. Rev. B 48, 10846 (1993)

    Article  ADS  Google Scholar 

  15. Dalibor, T., et al.: Phys. Rev. B 55, 13618 (1997)

    Article  ADS  Google Scholar 

  16. Meng, Z., et al.: J. Disp. Techn. 2, 265 (2006)

    Article  ADS  Google Scholar 

  17. Phung, T.H., Zhu, C.: J. Electrochem. Soc. 157(7), H755–H758 (2010)

    Article  Google Scholar 

  18. Park, J.-H., et al.: Appl. Phys. Lett. 91, 143107–143107-3 (2007)

    Google Scholar 

  19. Brett, D.A., et al.: Phys. Rev. B 72, 193202 (2005)

    Article  ADS  Google Scholar 

  20. Dogra. R., et al.: Hyperfine Interact. 177, 33–37 (2007)

    Article  ADS  Google Scholar 

  21. Dogra, R., et al.: Phys. B 376, 245 (2006)

    Article  ADS  Google Scholar 

  22. Timmers, H., et al.: Hyperfine Interact. 197, 159–165 (2010)

    Article  ADS  Google Scholar 

  23. Abiona, A.A., Kemp, W., Timmers, H.: Hyperfine Interact. 221, 65–72 (2013)

    Article  ADS  Google Scholar 

  24. Abiona, A.A., Kemp, W., Timmers, H.: AIP Conf. Proc. 1583, 105 (2014)

    Article  ADS  Google Scholar 

  25. Bezakova, E.: Ph.D. thesis, Australian National University, Canberra (1998)

  26. Haas, H., Carbonari, A., Blaha, P.: Annual Report No. HMI-B 526, 24 (1994)

  27. Giannozzi, P., et al.: J. Phys.: Condens. Matter. 21(39), 395502 (2009)

    Google Scholar 

  28. Pickard, C.J., Mauri, F.: Phys. Rev. B 245101, 63 (2001)

    Google Scholar 

  29. Perdew, J.P., Wang, Y.: Phys. Rev. B 45(24), 13244–13249 (1992)

    Article  ADS  Google Scholar 

  30. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. Haas, P., Tran, F., Blaha, P.: Phys. Rev. B 79, 085104 (2009)

    Article  ADS  Google Scholar 

  32. Wichert, Th., Swanson, M.L.: J. Appl. Phys. 66, 7 (1989)

    Article  Google Scholar 

  33. Shim, J., Lee, E-K.: Phys. Rev. B 71, 035206 (2005)

    Article  ADS  Google Scholar 

  34. Zywietz, A., Furthmüller, J., Bechstedt, F.: Phys. Rev. B 59, 1516 (1999)

    Article  Google Scholar 

  35. Chroneos, A., Grimes, R.W., Tsamis, C.: J Mater Sci.: Mater Electron 18, 763–768 (2007)

    Google Scholar 

  36. Chroneos, A., et al.: Acta Phys. Polon. A 119, 774 (2011)

    Google Scholar 

  37. Abiona, A.A., Kemp, W., Timmers, H.: arXiv preprint arXiv:1409.2705

  38. Ziegler, J.F., Biersack, J.P., Ziegler, M.D.: SRIM, the Stopping and Range of Ions in Matter, SRIM Company (2008), http://www.srim.org/

  39. Abiona, A.A., Kemp, W., Williams, E., Timmers, H.: Heavy Ion Accelerator Symposium on Fundamental and Applied Science 2012, Canberra, Australia, EPJ Web of Conference, vol. 35 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Abiona.

Additional information

Proceedings of the 5th Joint International Conference on Hyperfine Interactions and International Symposium on Nuclear Quadrupole Interactions (HFI/NQI 2014) Canberra, Australia, 21-26 September 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiona, A.A., Kemp, W., Timmers, H. et al. Palladium-defect complexes in diamond and silicon carbide. Hyperfine Interact 230, 115–122 (2015). https://doi.org/10.1007/s10751-014-1099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-014-1099-3

Keywords

Mathematics Subject Classifications

Navigation