Hyperfine Interactions

, Volume 228, Issue 1–3, pp 141–150 | Cite as

The Gbar project, or how does antimatter fall?

  • Paul Indelicato
  • G. Chardin
  • P. Grandemange
  • D. Lunney
  • V. Manea
  • A. Badertscher
  • P. Crivelli
  • A. Curioni
  • A. Marchionni
  • B. Rossi
  • A. Rubbia
  • V. Nesvizhevsky
  • D. Brook-Roberge
  • P. Comini
  • P. Debu
  • P. Dupré
  • L. Liszkay
  • B. Mansoulié
  • P. Pérez
  • J.-M. Rey
  • B. Reymond
  • N. Ruiz
  • Y. Sacquin
  • B. Vallage
  • F. Biraben
  • P. Cladé
  • A. Douillet
  • G. Dufour
  • S. Guellati
  • L. Hilico
  • A. Lambrecht
  • R. Guérout
  • J.-P. Karr
  • F. Nez
  • S. Reynaud
  • C. I. Szabo
  • V.-Q. Tran
  • J. Trapateau
  • A. Mohri
  • Y. Yamazaki
  • M. Charlton
  • S. Eriksson
  • N. Madsen
  • D.P. van der Werf
  • N. Kuroda
  • H. Torii
  • Y. Nagashima
  • F. Schmidt-Kaler
  • J. Walz
  • S. Wolf
  • P.-A. Hervieux
  • G. Manfredi
  • A. Voronin
  • P. Froelich
  • S. Wronka
  • M. Staszczak
Article

Abstract

The Einstein classical Weak Equivalence Principle states that the trajectory of a particle is independent of its composition and internal structure when it is only submitted to gravitational forces. This fundamental principle has never been directly tested with antimatter. However, theoretical models such as supergravity may contain components inducing repulsive gravity, thus violating this principle. The GBAR project (Gravitational Behaviour of Antihydrogen at Rest) proposes to measure the free fall acceleration of ultracold neutral antihydrogen atoms in the terrestrial gravitational field. The experiment consists in preparing antihydrogen ions (one antiproton and two positrons) and sympathetically cool them with Be+ ions to a few 10 μ K. The ultracold ions will then be photoionized just above threshold, and the free-fall time over a known distance measured. In this work, the GBAR project is described as well as possible improvements that use quantum reflection of antihydrogen on surfaces to use quantum methods of measurements.

Keywords

Antihydrogen Gravitation Free fall Sympathetic cooling Weak equivalence principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Karshenboim, S.G.: Astron. Lett. 35, 663 (2009). doi:10.1134/S1063773709100028 CrossRefADSGoogle Scholar
  4. 4.
    Kostelecký, V.A., Tasson, J.D.: Phys. Rev. D 83, 016013 (2011). http://link.aps.org/doi/10.1103/PhysRevD.83.016013 CrossRefADSGoogle Scholar
  5. 5.
    Villata, M.: EPL (Europhys. Lett.) 94, 20001 (2011). http://stacks.iop.org/0295-5075/94/i=2/a=20001 CrossRefADSGoogle Scholar
  6. 6.
    Benoit-Lévy, A., Chardin, G.: Astron. Astrophys. 537(1), A78 (2012). doi:10.1051/0004-6361/201016103 CrossRefADSGoogle Scholar
  7. 7.
    Cabbolet, M.T.F.: Astrophys. Space Sci. 337, 5 (2012). doi:10.1007/s10509-011-0939-8 CrossRefADSGoogle Scholar
  8. 8.
    Villata, M.: Astrophys. Space Sci. 337, 15 (2012). doi:10.1007/s10509-011-0940-2 CrossRefADSGoogle Scholar
  9. 9.
    Hughes, R.J., Holzscheiter, M.H.: Phys. Rev. Lett. 66, 854 (1991). http://link.aps.org/doi/10.1103/PhysRevLett.66.854 CrossRefADSGoogle Scholar
  10. 10.
    Gabrielse, G., Khabbaz, A., Hall, D.S., Heimann, C., Kalinowsky, H., Jhe, W.: Phys. Rev. Lett. 82, 3198 (1999). http://link.aps.org/doi/10.1103/PhysRevLett.82.3198 CrossRefADSGoogle Scholar
  11. 11.
    Apostolakis, A., Aslanides, E., Backenstoss, G., Bargassa, P., Behnke, O., Benelli, A., Bertin, V., Blanc, F., Bloch, P., Carlson, P., Carroll, M., Cawley, E., Chardin, G., Chertok, M.B., Danielsson, M., Dejardin, M., Derre, J., Ealet, A., Eleftheriadis, C., Faravel, W., Fetscher, L., Fidecaro, M., Filipčič, A., Francis, D., Fry, J., Gabathuler, E., Gamet, R., Gerber, H.J., Go, A., Haselden, A., Hayman, P.J., Henry-Couannier, F., Hollander, R.W., Jon-And, K., Kettle, P.R., Kokkas, P., Kreuger, R., Le Gac, R., Leimgruber, F., Mandić, I., Manthos, N., Marel, G., Mikuž, M., Miller, J., Montanet, F., Muller, A., Nakada, T., Pagels, B., Papadopoulos, I., Pavlopoulos, P., Polivka, G., Rickenbach, R., Roberts, B.L., Ruf, T., Sakeliou, L., Schäfer, M., Schaller, L.A., Schietinger, T., Schopper, A., Tauscher, L., Thibault, C., Touchard, F., Touramanis, C., Van Eijk, C.W.E., Vlachos, S., Weber, P., Wigger, O., Wolter, M., Zavrtanik, D., Zimmerman, D., Ellis, J., Mavromatos, N.E., Nanopoulos, D.V.: Phys. Lett. B 452, 425 (1999). http://www.sciencedirect.com/science/article/pii/S0370269399002713 CrossRefADSGoogle Scholar
  12. 12.
    Adelberger, E.G., Heckel, B.R., Stubbs, C.W., Su, Y.: Phys. Rev. Lett. 66, 850 (1991). http://prl.aps.org/abstract/PRL/v66/i7/p850_1 CrossRefADSGoogle Scholar
  13. 13.
    Goldman, T., Nieto, M.M., Holzscheiter, M.H., Darling, T.W., Schauer, M., Schecker, J.: Phys. Rev. Lett. 67, 1048 (1991). http://link.aps.org/doi/10.1103/PhysRevLett.67.1048 CrossRefADSGoogle Scholar
  14. 14.
    Holzscheiter, M.H., Brown, R.E., Camp, J.B., Cornford, S., Darling, T., Dyer, P., Goldman, T., Høibråten, S., Hosea, K., Hughes, R.J., Jarmie, N., Kenefick, R.A., King, N.S.P., Lizon, D.C., Nieto, M.M., Midzor, M.M., Parry, S.P., Rochet, J., Ristinen, R.A., Schauer, M.M., Schecker, J.A., Witteborn, F.C.: Nucl. Phys. A 558, 709 (1993). http://www.sciencedirect.com/science/article/pii/037594749390432W CrossRefADSGoogle Scholar
  15. 15.
    Drobychev, G.Y., Nédélec, P., Sillou, D., Gribakin, G., Walters, H., Ferrari, G., Prevedelli, M., Tino, G.M., Doser, M., Canali, C., Carraro, C., Lagomarsino, V., Manuzio, G., Testera, G., Zavatarelli, S., Amoretti, M., Kellerbauer, A.G., Meier, J., Warring, U., Oberthaler, M.K., Boscolo, I., Castelli, F., Cialdi, S., Formaro, L., Gervasini, A., Giammarchi, G., Vairo, A., Consolati, G., Dupasquier, A., Quasso, F., Stroke, H.H., Belov, A.S., Gninenko, S.N., Matveev, V.A., Byakov, V.M., Stepanov, S.V., Zvezhinskij, D.S., De Combarieu, M., Forget, P., Pari, P., Cabaret, L., Comparat, D., Bonomi, G., Rotondi, A., Djourelov, N., Jacquey, M., Büchner, M., Trénec, G., Vigué, J., Brusa, R.S., Mariazzi, S., Hogan, S., Merkt, F., Badertscher, A., Crivelli, P., Gendotti, U., Rubbia, A.: Proposal for the AEGIS experiment at the CERN antiproton decelerator (Antimatter Experiment: Gravity, Interferometry, Spectroscopy), Tech. Rep. SPSC-P-334. CERN-SPSC-2007-017. CERN, Geneva (2007). http://cds.cern.ch/record/1037532?ln=fr Google Scholar
  16. 16.
    Chardin, G., Grandemange, P., Lunney, D., Manea, V., Badertscher, A., Crivelli, P., Curioni, A., Marchionni, A., Rossi, B., Rubbia, A., Nesvizhevsky, V., Hervieux, P.-A., Manfredi, G., Comini, P., Debu, P., Dupré, P., Liszkay, L., Mansoulié, B., Pérez, P., Rey, J.-M., Ruiz, N., Sacquin, Y., Voronin, A., Biraben, F., Cladé, P., Douillet, A., Gérardin, A., Guellati, S., Hilico, L., Indelicato, P., Lambrecht, A., Guérout, R., Karr, J.-P., Nez, F., Reynaud, S., Tran, V.-Q., Mohri, A., Yamazaki, Y., Charlton, M., Eriksson, S., Madsen, N., van der Werf, D.-P., Kuroda, N., Torii, H., Nagashima, Y.: Proposal to measure the Gravitational Behaviour of Antihydrogen at Rest, Tech. Rep. CERN-SPSC-2011-029. SPSC-P-342. CERN, Geneva (2011). http://cds.cern.ch/record/1386684?ln=en Google Scholar
  17. 17.
    Alpha Collaboration, Charman, A.E.: Nat. Commun. 4, 1785 (2013). doi:10.1038/ncomms2787 CrossRefGoogle Scholar
  18. 18.
    Walz, J., Hänsch, T.W.: Gen. Relativ. Gravit. 36, 561 (2004). doi:10.1023/B:GERG.0000.010730.93408.87 CrossRefMATHADSGoogle Scholar
  19. 19.
    Tranquille, G., Belochitskii, P., Eriksson, T., Maury, S., Oelert, W.: Conf. Proc. C1205201, THPPP017. 3 (2012)Google Scholar
  20. 20.
    Herfurth, F., Dilling, J., Kellerbauer, A., Bollen, G., Henry, S., Kluge, H.J., Lamour, E., Lunney, D., Moore, R.B., Scheidenberger, C., Schwarz, S., Sikler, G., Szerypo, J.: Nucl. Instr. Methods A 469, 254 (2001). http://www.sciencedirect.com/science/article/B6TJM-43PGJKX-D/2/d5a71a85b9a62763e751fb5a1fcb3716 CrossRefADSGoogle Scholar
  21. 21.
    Lunney, D., Bachelet, C., Guénaut, C., Henry, S., Sewtz, M.: Nucl. Instr. Methods A 598, 379 (2009). http://www.sciencedirect.com/science/article/pii/S0168900208014459 CrossRefADSGoogle Scholar
  22. 22.
    Oshima, N., Kojima, T.M., Niigaki, M., Mohri, A., Komaki, K., Yamazaki, Y.: Phys. Rev. Lett. 93, 195001 (2004). http://link.aps.org/doi/10.1103/PhysRevLett.93.195001 CrossRefADSGoogle Scholar
  23. 23.
    Liszkay, L., Corbel, C., Perez, P., Desgardin, P., Barthe, M.-F., Ohdaira, T., Suzuki, R., Crivelli, P., Gendotti, U., Rubbia, A., Etienne, M., Walcarius, A.: Appl. Phys. Lett. 92, 063114 (2008). doi:10.1063/1.2844888. http://link.aip.org/link/?APL/92/063114/1 CrossRefADSGoogle Scholar
  24. 24.
    Cassidy, D.B., Crivelli, P., Hisakado, T.H., Liszkay, L., Meligne, V.E., Perez, P., Tom, H.W.K., Mills, A.P.: Phys. Rev. A 81, 012715 (2010). http://link.aps.org/doi/10.1103/PhysRevA.81.012715 CrossRefADSGoogle Scholar
  25. 25.
    Crivelli, P., Gendotti, U., Rubbia, A., Liszkay, L., Perez, P., Corbel, C.: Phys. Rev. A 81, 052703 (2010). http://link.aps.org/doi/10.1103/PhysRevA.81.052703 CrossRefADSGoogle Scholar
  26. 26.
    Comini, P., Hervieux, P.-A., Biraben, F.: These proceedings, Hyperfine Interaction. doi:10.1007/s10751-014-1030-y
  27. 27.
    Ball, H., Lee, M.W., Gensemer, S.D., Biercuk, M.J.: Rev. Sci. Instrum. 84, 063107 (2013). doi:10.1063/1.4811093 CrossRefADSGoogle Scholar
  28. 28.
    Lo, H.-Y., Alonso, J., Kienzler, D., Keitch, B.C., Clercq, L.E., Negnevitsky, V., Home, J.P.: Appl. Phys. B, 1 (2013). doi:10.1007/s00340-013-5605-0 Google Scholar
  29. 29.
    Vasilyev, S., Nevsky, A., Ernsting, I., Hansen, M., Shen, J., Schiller, S.: Appl. Phys. B Lasers Opt. 103, 27 (2011). doi:10.1007/s00340-011-4435-1 CrossRefADSGoogle Scholar
  30. 30.
    Wilson, A.C., Ospelkaus, C., VanDevender, A.P., Mlynek, J.A., Brown, K.R., Leibfried, D., Wineland, D.J.: Appl. Phys. B 105, 741 (2011). doi:10.1007/s00340-011-4771-1 CrossRefADSGoogle Scholar
  31. 31.
    Larson, D.J., Bergquist, J.C., Bollinger, J.J., Itano, W.M., Wineland, D.J.: Phys. Rev. Lett. 57, 70 (1986). http://link.aps.org/doi/10.1103/PhysRevLett.57.70 CrossRefADSGoogle Scholar
  32. 32.
    Barrett, M.D., DeMarco, B., Schaetz, T., Meyer, V., Leibfried, D., Britton, J., Chiaverini, J., Itano, W.M., Jelenkovicacute, B., Jost, J.D., Langer, C., Rosenband, T., Wineland, D.J.: Phys. Rev. A 68, 042302 (2003). http://link.aps.org/doi/10.1103/PhysRevA.68.042302 CrossRefADSGoogle Scholar
  33. 33.
    Heinzen, D.J., Wineland, D.J.: Phys. Rev. A 42, 2977 (1990). http://link.aps.org/doi/10.1103/PhysRevA.42.2977 CrossRefADSGoogle Scholar
  34. 34.
    Monroe, C., Meekhof, D.M., King, B.E., Jefferts, S.R., Itano, W.M., Wineland, D.J., Gould, P.: Phys. Rev. Lett. 75, 4011 (1995). http://link.aps.org/doi/10.1103/PhysRevLett.75.4011 CrossRefADSGoogle Scholar
  35. 35.
    Bussmann, M., Schramm, U., Habs, D., Kolhinen, V.S., Szerypo, J.: Int. J. Mass Spectrom. 251, 179 (2006). http://www.sciencedirect.com/science/article/B6VND-4JGJGXH-1/2/c3e1265f6ef86a3c9bfa07c0eab0d64e CrossRefADSGoogle Scholar
  36. 36.
    Eble, J.F., Ulm, S., Zahariev, P., Schmidt-Kaler, F., Singer, K.: J. Opt. Soc. Am. B 27, A99 (2010). http://josab.osa.org/abstract.cfm?URI=josab-27-6-A99 CrossRefGoogle Scholar
  37. 37.
    Huber, G., Ziesel, F., Poschinger, U., Singer, K., Schmidt-Kaler, F.: Appl. Phys. B 100, 725 (2010). doi:10.1007/s00340-010-4148-x CrossRefADSGoogle Scholar
  38. 38.
    Walther, A., Ziesel, F., Ruster, T., Dawkins, S.T., Ott, K., Hettrich, M., Singer, K., Schmidt-Kaler, F., Poschinger, U.: Phys. Rev. Lett. 109, 080501 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.109.080501 CrossRefADSGoogle Scholar
  39. 39.
  40. 40.
    Dufour, G., Gérardin, A., Guérout, R., Lambrecht, A., Nesvizhevsky, V.V., Reynaud, S., Voronin, A.Y.: Phys. Rev. A 87, 012901 (2013). http://link.aps.org/doi/10.1103/PhysRevA.87.012901 CrossRefADSGoogle Scholar
  41. 41.
    Nesvizhevsky, V.V., Borner, H.G., Petukhov, A.K., Abele, H., Baeszler, S., Ruesz, F.J., Stoferle, T., Westphal, A., Gagarski, A.M., Petrov, G.A., Strelkov, A.V.: Nature 415, 297 (2002). doi:10.1038/415297a CrossRefADSGoogle Scholar
  42. 42.
    Nesvizhevsky, V.V., Voronin, A.Y., Cubitt, R., Protasov, K.V.: Nat. Phys. 6, 114 (2010). doi:10.1038/nphys1478 CrossRefGoogle Scholar
  43. 43.
    Voronin, A.Y., Nesvizhevsky, V.V., Reynaud, S.: Phys. Rev. A 85, 014902 (2012). http://link.aps.org/doi/10.1103/PhysRevA.85.014902 CrossRefADSGoogle Scholar
  44. 44.
    Voronin, A.Y., Nesvizhevsky, V.V., Reynaud, S.: J. Phys. B: At. Mol. Opt. Phys. 45, 165007 (2012). http://stacks.iop.org/0953-4075/45/i=16/a=165007 CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paul Indelicato
    • 5
  • G. Chardin
    • 1
  • P. Grandemange
    • 1
  • D. Lunney
    • 1
  • V. Manea
    • 1
  • A. Badertscher
    • 2
  • P. Crivelli
    • 2
  • A. Curioni
    • 2
  • A. Marchionni
    • 2
  • B. Rossi
    • 2
  • A. Rubbia
    • 2
  • V. Nesvizhevsky
    • 3
  • D. Brook-Roberge
    • 4
  • P. Comini
    • 4
  • P. Debu
    • 4
  • P. Dupré
    • 4
  • L. Liszkay
    • 4
  • B. Mansoulié
    • 4
  • P. Pérez
    • 4
  • J.-M. Rey
    • 4
  • B. Reymond
    • 4
  • N. Ruiz
    • 4
  • Y. Sacquin
    • 4
  • B. Vallage
    • 4
  • F. Biraben
    • 5
  • P. Cladé
    • 5
  • A. Douillet
    • 5
    • 6
  • G. Dufour
    • 5
  • S. Guellati
    • 5
  • L. Hilico
    • 5
    • 6
  • A. Lambrecht
    • 5
  • R. Guérout
    • 5
  • J.-P. Karr
    • 5
    • 6
  • F. Nez
    • 5
  • S. Reynaud
    • 5
  • C. I. Szabo
    • 5
  • V.-Q. Tran
    • 5
  • J. Trapateau
    • 5
  • A. Mohri
    • 7
  • Y. Yamazaki
    • 7
  • M. Charlton
    • 8
  • S. Eriksson
    • 8
  • N. Madsen
    • 8
  • D.P. van der Werf
    • 8
  • N. Kuroda
    • 9
  • H. Torii
    • 9
  • Y. Nagashima
    • 10
  • F. Schmidt-Kaler
    • 11
  • J. Walz
    • 11
  • S. Wolf
    • 11
  • P.-A. Hervieux
    • 12
  • G. Manfredi
    • 12
  • A. Voronin
    • 13
  • P. Froelich
    • 13
  • S. Wronka
    • 14
  • M. Staszczak
    • 14
  1. 1.CSNSM, CNRS, IN2P3Université Paris Sud - Paris XIOrsayFrance
  2. 2.IPP, ETHZZürichSwitzerland
  3. 3.Institut Laue-Langevin (ILL)GrenobleFrance
  4. 4.IRFU, CEAGif-sur-Yvette CedexFrance
  5. 5.Laboratoire Kastler Brossel, École Normale Supérieure, CNRSUniversité P. et M. Curie – Paris 6Paris CEDEX 05France
  6. 6.Université d’Evry Val d’EssonneÉvryFrance
  7. 7.Atomic Physics LaboratoryRIKENSaitamaJapan
  8. 8.Department of PhysicsSwansea UniversitySwanseaUK
  9. 9.Institute of PhysicsUniversity of TokyoTokyoJapan
  10. 10.Department of PhysicsTokyo University of ScienceTokyoJapan
  11. 11.Johannes Gutenberg-Universität Mainz, Institut für PhysikMainzGermany
  12. 12.Université de Strasbourg (UDS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Département d’Optique ultrarapide et de Nanophotonique (DON)Strasbourg CedexFrance
  13. 13.P. N. Lebedev Physical InstituteMoscowRussia
  14. 14.National Centre for Nuclear ResearchOtwockPoland

Personalised recommendations