Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

First results from the CRIS experiment

Abstract

The ability to study rare isotopes with techniques such as mass spectrometry and laser spectroscopy is often prevented by low production rates and large isobaric contamination. This has necessitated the development of novel beam cleaning techniques that can efficiently isolate the isotope of interest. The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, achieves this by resonantly ionizing a bunched atom beam in a region of ultra high vacuum. This method is motivated by the need to measure the hyperfine structure and isotope shift at the extremes of isospin where typical production rates drop to 1 atom/s. The technique also offers the ability to purify an ion beam and even select long-lived isomeric states (> 1 ms) from the ground state, which can be subsequently studied by decay spectroscopy or mass spectrometry experiments. This paper will report on the successful commissioning of the CRIS beam line and the recent laser spectroscopy results and laser assisted nuclear decay spectroscopy on the neutron deficient francium isotopes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cheal, B., et al.: Phys. Rev. C. 82, 051302 (2010)

  2. 2.

    Blaum, K., Dilling, J., Nörtershäuser, W.: Phys. Scr. 2013, 014017 (2013)

  3. 3.

    Wing, W.H., Ruff, G.A., Lamb, W.E., Spezeski, J.J.: Phys. Rev. Lett. 36, 1488 (1976)

  4. 4.

    Cheal, B., Flanagan, K.T.: J. Phys. G. 37, 113101 (2010)

  5. 5.

    Letokhov, V.S., Mishin, V.I.: Abstracts from the Workshop on the ISOLDE Programme: On-line in 1985 and Beyond, Zinal. Switzerland (1984)

  6. 6.

    Klu¨ge, H.J., Ames, F., Ruster, W., Wallmeroth, K.: Proc. Acc. Radioact. Beams WS TRIUMF Proceedings TRI-85-1 119 (1985)

  7. 7.

    Alkhazov, G.D., et al.: Nucl. Instrum. Methods Phys. Res. Sect. B. 69, 517 (1992) ISSN 0168-583X

  8. 8.

    Cocolios, T.E., et al.: Phys. Rev. Lett. 106, 052503 (2011)

  9. 9.

    Seliverstov, M.D., et al.: Phys. Lett. B. 719, 362 (2013)

  10. 10.

    Kudryavtsev, Y., Ferrer, R., Huyse, M., Van den Bergh, P., Van Duppen, P.: Nucl. Instrum. Methods Phys. Res. Sect. B. 297, 7 (2013)

  11. 11.

    Kudriavtsev, Y.A., Letokhov, V.S.: Appl. Phys. B-Photo. 29, 219 (1982)

  12. 12.

    Letokhov, V.S.: Tech. rep. CERN (1984)

  13. 13.

    Collaboration, C.M.T.: Tech. rep. CERN-ISOLDE (1988)

  14. 14.

    Kudryavtsev, Y.A., Letokhov, V.S., Petrunin, V.V.: JETP Lett. 42, 26 (1985)

  15. 15.

    Aseyev, SA, et al.: Optics Lett. 16, 514 (1991)

  16. 16.

    Monz, L., et al.: Spectrochim. Acta. Part B. 48, 1655 (1993)

  17. 17.

    Schulz, C., et al.: J. Phys. B. 24, 4831 (1991)

  18. 18.

    Nieminen, A, et al.: Nucl. Instrum. Methods Phys. Res. Sect. A. 469, 244 (2001) ISSN 0168-9002

  19. 19.

    Nieminen, A., et al.: Phys. Rev. Lett. 88, 094801 (2002)

  20. 20.

    Campbell, P., et al.: Phys. Rev. Lett. 89, 082501 (2002)

  21. 21.

    Campbell, P., et al.: Eur. Phys. J. A. 15b, 45 (2002)

  22. 22.

    Billowes, J., et al.: Tech. Rep. INTC-I-048 CERN (2003)

  23. 23.

    Mané, E., et al.: Eur. Phys. J. A. 42, 503 (2009)

  24. 24.

    Flanagan, K.T., et al.: Phys. Rev. Lett. 103, 142501 (2009)

  25. 25.

    Cheal, B., et al.: Phys. Rev. Lett. 104, 252502 (2010)

  26. 26.

    Yordanov, D.T., et al.: Phys. Rev. Lett. 110(19), 192501 (2013)

  27. 27.

    Papuga, J., et al.: Phys. Rev. Lett. 110(17), 172503 (2013)

  28. 28.

    Billowes, J., et al.: CERN-INTC-2008-010 CERN, 2008

  29. 29.

    Sauvage, J., et al.: Hyperfine Interact. 129, 303 (2000) ISSN 0304-3843

  30. 30.

    Procter, T.J., et al.: J. Phys. Conf. Ser. 381, 012070 (2012)

  31. 31.

    Vingerhoets, P., et al.: Phys. Lett. B. 703, 34 (2011)

  32. 32.

    Rajabali, M.M., et al.: Nucl. Instrum. Methods Phys. Res. Sect. A. 707, 35 (2013)

  33. 33.

    Procter, T.J., Flanagan, K.T.: Hyperfine Interact. 216, 89 (2013)

  34. 34.

    Duong, H.T., et al.: Europhys. Lett. 3, 175 (1987)

  35. 35.

    Rothe, S., et al.: Nucl. Instrum. Methods Phys. Res. Sect. B. 317, 561 (2013)

  36. 36.

    Flanagan, K.T., et al.: Phys. Rev. Lett. 111, 212501 (2013)

  37. 37.

    Voss, A., et al.: Phys. Rev. Lett. 111(12), 122501 (2013)

  38. 38.

    Cocolios, T.E., et al.: Nucl. Instrum. Methods Phys. Res. Sect. B. 317, 565 (2013)

  39. 39.

    Marsh, B.A., et al.: Nucl. Instrum. Methods Phys. Res. Sect. B. 317, 550 (2013)

  40. 40.

    Lynch, K.M., et al.: J. Phys. Conf. Ser. 381, 012128 (2012)

  41. 41.

    Lynch, K.M., Cocolios, T.E., Rajabali, M.M.: Hyperfine Interact. 216, 95 (2013)

  42. 42.

    Lynch, K.M., et al.: In preparation (2013)

Download references

Author information

Correspondence to K. T. Flanagan.

Additional information

Proceedings of the 9th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research “Recent Achievements and Future Prospects” (LASER 2013) held in Poznan, Poland, 13–16 May, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flanagan, K.T., Billowes, J., Bissell, M.L. et al. First results from the CRIS experiment. Hyperfine Interact 227, 131–137 (2014). https://doi.org/10.1007/s10751-013-0988-1

Download citation

Keywords

  • Laser spectroscopy
  • Nuclear structure