Abstract
The aim of presented paper was to study preparation of catalytic materials for water purification. Iron oxide (Fe3O4) samples supported on activated carbon were prepared by wet impregnation method and low temperature heating in an inert atmosphere. The as-prepared, activated and samples after catalytic test were characterized by Mössbauer spectroscopy and X-ray diffraction. The obtained X-ray diffraction patterns of prepared samples show broad and low-intensity peaks of magnetite phase and the characteristic peaks of the activated carbon. The average crystallite size of magnetite particles was calculated below 20 nm. The registered Mössbauer spectra of prepared materials show a superposition of doublet lines or doublet and sextet components. The calculated hyperfine parameters after spectra evaluation reveal the presence of magnetite phase with nanosize particles. Relaxation phenomena were registered in both cases, i.e. superparamagnetism or collective magnetic excitation behavior, respectively. Low temperature Mössbauer spectra confirm this observation. Application of materials as photo-Fenton catalysts for organic pollutions degradation was studied. It was obtained high adsorption degree of dye, extremely high reaction rate and fast dye degradation. Photocatalytic behaviour of a more active sample was enhanced using mechanochemical activation (MCA). The nanometric size and high dispersion of photocatalyst particles influence both the adsorption and degradation mechanism of reaction. The results showed that all studied photocatalysts effectively decompose the organic pollutants under UV light irradiation. Partial oxidation of samples after catalytic tests was registered. Combination of magnetic particles with high photocatalytic activity meets both the requirements of photocatalytic degradation of water contaminants and that of recovery for cyclic utilization of material.
This is a preview of subscription content, access via your institution.
References
Serp, P., Figueiredo, J.L.: Carbon Materials for Catalysis. Wiley, Hoboken (2009)
Marsh, H., Rodrigues-Reinoso, F.: Activated Carbon. Elsevier Ltd., Oxford (2006)
Shen, W., Li, Z., Liu, Y.: Surface chemical functional groups modification of porous carbon. Recent Patents Chem. Eng. 1, 27–40 (2008)
McQueeney, R.J., Yethiraj, M., Chang, S., Montfrooij, W., Perring, T.G., Honig, J.M., Metcalf, P.: Zener double exchange from local valence fluctuations in magnetite. Phys. Rev. Lett. 99, 246401–246405 (2007)
Bautista, P., Mohedano, A.F., Casas, J.A., Zazo, J.A., Rodriguez, J.J.: An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol. 83/10, 1323–1338 (2008)
Umar, M., Aziz, H.A., Yusoff, M.S.: Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 30/11, 2113–2121 (2010)
Tang, W.Z., Chen, R.Z.: Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere 32/5, 947–958 (1996)
Padoley, K.V., Mudliar, S.N., Banerjee, S.K., Deshmukh, S.C., Pandey, R.A.: Fenton oxidation: a pretreatment option for improved biological treatment of pyridine and 3-cyanopyridine plant wastewater. Chem. Eng. J. 166/1, 1–9 (2011)
Hermosilla, D., Merayo, N., Ordóñez, R., Blanco, A.: Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Manag. 32/6, 1236–1243 (2012)
Navarro, R., Ichikawa, H., Tatsumi, K.: Ferrite formation from photo-Fenton treated wastewater. Chemosphere 80, 404–409 (2010)
Hansson, H., Kaczala, F., Marques, M., Hogland, W.: Photo-Fenton and Fenton oxidation of recalcitrant industrial wastewater using nanoscale zero-valent iron. Intern. J. Photoen. (2012). doi:10.1155/2012/531076
Emilio, C.A., Jardim, W.F., Litter, M.I., Mansilla, H.D.: EDTA destruction using solar ferrioxalate advanced oxidation technology (AOT). Comparison with solar photo-Fenton treatment. J. Photochem. Photobiol. A 151, 121–127 (2002)
Cedeño-Mattei, Y., Perales-Pérez, O.: Synthesis of high-coercivity cobalt ferrite nanocrystals. Microelectron. J. 40, 673–676 (2009)
Tsyntsarski, B., Petrova, B., Budinova, T., Petrov, N., Velasco, L., Ania, C.O.: Characterization and application of activated carbon from biomass and coal wastes for naphthalene removal. Bulg. Chem. Commun. 43/4, 552–557 (2011)
Sawatsky, G.A., van der Woude, F., Morrish, A.H.: Recoilless fraction ratio for Fe57 in octahedral and tetrahedral sites of a spinel and a garnet. Phys. Rev. 183, 383–386 (1969)
Srivastava, C.M., Shringi, S.N., Babu, M.V.: Mössbauer study of the low-temperature phase of magnetite. Phys. Stat. Sol. (a) 65, 731–735 (2006)
Coutinho, A.R., Rocha, J.D., Luengo, C.A.: Preparing and characterizing biocarbon electrodes. Fuel Process Technol. 67, 93–102 (2000)
Williamson, G., Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metal. 1/1, 22–31 (1953)
Bødkert, F., Mørup, S., Oxborrow, C.A., Linderoth, S., Madsen, M.B., Niemansverdriet, J.W.: Mössbauer studies of ultrafine iron-containing particles on a carbon support. J. Phys. Condens. Matter 4, 6555–5568 (1992)
Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J.M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F.J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., Wieczorek-Ciurowa, K.: Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7638 (2013)
Ortega-Liébana, M.C., Sánchez-López, E., Hidalgo-Carrillo, J., Marinas, A., Marinas, J.M., Urbano, F.J.: A comparative study of photocatalytic degradation of 3-chloropyridine under UV and solar light by homogeneous (photo-Fenton) and heterogeneous (TiO2) photocatalysis. Appl. Catal. B Environ. 127, 316–322 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Proceedings of the 32nd International Conference on the Applications of the Mössbauer Effect (ICAME 2013) held in Opatija, Croatia, 1–6 September 2013
Rights and permissions
About this article
Cite this article
Cherkezova-Zheleva, Z., Paneva, D., Tsvetkov, M. et al. Preparation of improved catalytic materials for water purification. Hyperfine Interact 226, 517–527 (2014). https://doi.org/10.1007/s10751-013-0976-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10751-013-0976-5
Keywords
- Nano-sized supported magnetite
- Activated carbon
- Mechanochemical activation
- Photo-Fenton reaction
- Wastewaters purification