Hyperfine Interactions

, Volume 217, Issue 1–3, pp 57–65 | Cite as

Mössbauer spectroscopy in catalysis

  • Károly LázárEmail author


Application of in situ Mössbauer spectroscopy for studying catalysts and catalytic processes is discussed. Examples are presented to illustrate the potentials of the method by describing studies on supported heterogeneous catalysts performed with 119Sn and 57Fe spectroscopies in cases with certain metals and alloys, oxides and porous substances. The results are interpreted in comparison to the catalytic performance.


In situ spectroscopy Supported catalysts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stevens, J.G.: (2008). Accessed May 2010
  2. 2.
    Stevens, J.G., Goforth, M.A., Newman, P.C., Fu, Y.-L. (eds.): Catalysts Handbook. Mössbauer Effect Data Center (1986)Google Scholar
  3. 3.
    Dumesic, J.A., Tøpsoe, H.: Mössbauer spectroscopy applications to heterogeneous catalysis. Adv. Catal. 26, 121–246 (1977)CrossRefGoogle Scholar
  4. 4.
    Berry, F.: Mössbauer spectroscopy in heterogeneous catalysis. In: Long, G. (ed.) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 1, pp. 391–442. Plenum Press, New York (1984)Google Scholar
  5. 5.
    van der Kraan, A.M.: Application of Mössbauer spectroscopy to the study of activation of catalysts. Hyperfine Interact. 40, 211–222 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Phillips, J.: Application of Mössbauer spectroscopy for the characterization of iron-containing catalysts. Hyperfine Interact. 111, 3–16 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Bussiére, P.: Mössbauer spectroscopy. In: Imelik, B., Vedrine, J.C. (eds.) Catalyst Characterisation: Physical Methods for Solid Materials, pp. 323–364. Springer (1994)Google Scholar
  8. 8.
    Niemantsverdriet, J.W.: Spectroscopy in Catalysis. VCH, Weinheim (1993)Google Scholar
  9. 9.
    Millet, J.-M.: Mössbauer spectroscopy in heterogenous catalysis. Adv. Catal. 51, 309–350 (2007)CrossRefGoogle Scholar
  10. 10.
    Stievano, L., Wagner, F.E.: Mössbauer spectroscopy. In: Che, M., Vedrine, J. (eds.) Characterisation of Solid Materials and Heterogenous Catalysts, vol. 10, pp. 407–452. Wiley-VCH (2012)Google Scholar
  11. 11.
    Clausen, B.S., Mørup, S., Nielsen, P., Thrane, N., Tøpsoe, H.: Mössbauer in situ cell with variable temperature and applied magnetic fiels capabilities. J. Phys. E: Sci. Instrum. 12, 439–441 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    Shen, W.M., Dumesic, J.A., Hill, C.G.: Mössbauer spectroscopy cell for in situ catalyst characterisation and reaction kinetics studies at high pressures. Rev. Sci. Instrum. 52, 858–862 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    Jumas, J.-C., Olivier-Fourcade, J.: The greatness of Mössbauer spectroscopy to study new materials for Li-ion batteries and reforming catalysts. Mössbauer Eff. Ref. Data J. 35, 121–134 (2012)Google Scholar
  14. 14.
    Pijolat, M.: Transformations of iron catalysts during Fischer Tropsch syntheses as studied by Mössbauer spectroscopy, Thesis, Universite Claude Bernard, Lyon I (1983)Google Scholar
  15. 15.
    Lázár, K., Matusek, K., Mink, J., Dobos S., Guczi, L., Vizi-Orosz, A., Markó, L., Reiff, W.M.: Spectroscopic and catalytic study on metal carbonyl clustes supported on Cab-O-Sil. I. Impregnation and decomposition of Fe3(CO)12. J. Catal. 87, 163–178 (1984)CrossRefGoogle Scholar
  16. 16.
    Crajé, M.W.J., van der Kraan, A.M., van de Loosdrecht, J., van Berge, P.J.: The application of Mössbauer emission spectroscopy to industrial cobalt based Fischer–Tropsch catalysts. Catal. Today 71, 369–379 (2002)CrossRefGoogle Scholar
  17. 17.
    Niemantsverdriet, J.W., Flipse, C.F.J., van der Kraan, A.M., van Loef, J.J.: Mössbauer study of surface effects on iron Fischer–Tropsch catalysts. Appl. Surf. Sci. 10, 302–313 (1982)CrossRefGoogle Scholar
  18. 18.
    Topsoe, H., Clausen, B.S., Candia, R., Wivel, C., Morup, S.: In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts. J. Catal. 68, 433–452 (1981)CrossRefGoogle Scholar
  19. 19.
    Liu, K., Wang, A., Zhang, W., Wang, J., Huang, Y., Shen, J., Zhang, T.: Quasi in situ 57Fe Mössbauer spectroscopic study: quantitative correlation between Fe2 +  and H2 concentration for PROX over Ir-Fe/SiO2 catalyst. J. Phys. Chem., C 114, 8533–8541 (2010)CrossRefGoogle Scholar
  20. 20.
    Charlton, J.S., Cordey-Hayes, M., Harris, I.R.: A study of the 119Sn Mössbauer isomer shifts in some platinum-tin and gold-tin alloys. J. Less-Common Met. 20, 105–112 (1970)CrossRefGoogle Scholar
  21. 21.
    Bussière, P., Lázár, K.: Tin Mössbauer spectroscopy of tin-rich iridium-tin alloys. Hyperfine Interact. 41, 559–562 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    Hobson Jr., M.C., Goresh, S.L., Khare, G.P.: A Mössbauer spectroscopic study of platinum.tin reforming catalysts. J. Catal. 142, 641–654 (1993)CrossRefGoogle Scholar
  23. 23.
    Paál, Z., Wootsch, A., Teschner, D., Lázár, K., Sajó, I.E., Győrffy, N., Weinberg, G., Knop-Gericke, A., Schlögl, R.: Structural properties of an unsupported model Pt-Sn catalyst and its catalytic properties in cyclohexene transformation. Appl. Catal., A Gen. 391, 377–385 (2011)CrossRefGoogle Scholar
  24. 24.
    Chamam, M., Lázár, K., Pirault-Roy, L., Boghian, I., Paál, Z., Wootsch, A.: Characterization and catalytic properties of Rh-Sn/Al2O3 catalyst prepared by organometallic grafting. Appl. Catal., A Gen. 332, 27–36 (2007)CrossRefGoogle Scholar
  25. 25.
    Garron, F., Lázár, K., Epron, F.: Effect of the support on tin distribution in Pd-Sn/Al2O3 and Pd-Sn/SiO2 catalysts for water denitration. Appl. Catal., B Environ. 59, 57–69 (2005)CrossRefGoogle Scholar
  26. 26.
    Somodi, F., Borbáth, I., Margitfalvi, J.L., Stichleutner, S., Lázár, K.: Study of Au/SnOx-Al2O3 catalysts used in CO oxidation by in situ Mössbauer spectroscopy. Hyperfine Interact. 192, 13–21 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Kappenstein, C., Guerin, M., Lázár, K., Matusek, K., Paál, Z.: Characterisation and activity in n-hexane rearrangement reactions of metallic phases on Pt-Sn/Al2O3 catalysts of different preparation. J. Chem. Soc., Faraday Trans. 94, 2463–2473 (1998)CrossRefGoogle Scholar
  28. 28.
    Lázár, K., Rhodes, W.D., Borbáth, I., Hegedűs, M., Margitfalvi, J.L.: Reaction induced transformations in Pt-Sn/SiO2 catalysts: in situ 119Sn Mössbauer study. Hyperfine Interact. 139/140, 87–96 (2002)CrossRefGoogle Scholar
  29. 29.
    Rhodes, W.D., Margitfalvi, J.L., Borbáth, I., Lázár, K., Kovalchuk, V.I., d’Itri, J.L.: Hydrogen-assisted 1,2-dichloroethane dechlorination catalysed by Pt-Sn/SiO2 catalysts of different preparations. J. Catal. 230, 86–97 (2005)CrossRefGoogle Scholar
  30. 30.
    Margitfalvi, J.L., Borbáth, I., Hegedűs, M., Szegedi, Á., Lázár, K., Gőbölös S., Kristyán, S.: Low temperature oxidation of CO over tin-modified Pt/SiO2 catalysts. Catal. Today 73, 343–353 (2002)CrossRefGoogle Scholar
  31. 31.
    Margitfalvi, J.L., Borbáth, I., Lázár, K., Tfirst, E., Szegedi, A., Hegedűs, M., Gőbölös, S.: In situ characterisation of Sn-Pt/SiO2 catalysts used in low temperature oxidation of CO. J. Catal. 203, 94–103 (2001)CrossRefGoogle Scholar
  32. 32.
    Dumesic, J.A., Tøpsoe, H., Khammouma, S., Boudart, M.: Surface, catalytic and magnetic properties of small iron particles; Part II. Structure sensitivity of ammonia synthesis. J. Catal. 37, 503–512 (1975)CrossRefGoogle Scholar
  33. 33.
    Niemantsverdriet, J.W., van der Kraan, A.M., van Dijk, W.L., van der Baan, H.S.: Behaviour of metallic iron catalysts during Fisher–Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination and reaction kinetic measurements. J. Phys. Chem. 84, 3364–3370 (1980)CrossRefGoogle Scholar
  34. 34.
    Bartels, O., Becker, K.D.: A high-temperature Mössbauer study of the iron nitrides. Z. Phys. Chem. 221, 1509–1524 (2007)CrossRefGoogle Scholar
  35. 35.
    Kónya, Z., Vesselényi, I., Lázár, K., Kiss, J., Kiricsi, I.: Comparison of Fe/Al2O3 and Fe,Co/Al2O3 catalysts used for production of carbon nanotubes from acetylene by CCVD. IEEE Trans. Nanotechnol. 3, 73–79 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Lázár, K., Reiff, W.M., Mörke, W., Guczi, L.: Spectroscopic and catalytic study on metal carbonyl clusters supported on Cab-O-Sil. III. Application of low-temperature, high-field Mössbauer spectroscopy and ferromagnetic resonance for characterizing FeRu bimetallic catalysts. J. Catal. 100, 118–129 (1986)CrossRefGoogle Scholar
  37. 37.
    Lietz, G., Nimz, M., Völter, J., Lázár, K., Guczi, L.: Double promotion of palladium/silica catalysts by iron and magnesium oxide in the synthesis of methanol from carbon monoxide and hydrogen. Appl. Catal. 45, 71–83 (1988)CrossRefGoogle Scholar
  38. 38.
    Lázár, K.: Study of catalysts by Mössbauer spectroscopy. In: Garcia, Y. (ed.) Mössbauer Effect Reference and Data Journal. Special Issue: Chemical Applications 35, 134–142 (2012)Google Scholar
  39. 39.
    Lázár, K., Mathew, T., Koppány, Z., Megyeri, J., Samuel, V., Mirajkar, S.P., Rao, B.S., Guczi, L.: Cu1 − xCoxFe2O4 ferrospinels in alkylation: structural changes upon reaction. Phys. Chem. Chem. Phys. 4, 3530–3536 (2002)CrossRefGoogle Scholar
  40. 40.
    Lázár, K.: Transition metals in zeolites: case of iron. In: Andreev, M.K., Zubkov, O.L. (eds.) Zeolites: Synthesis, Chemistry and Applications, pp. 251–259. Novapublishers (2012) (open access)Google Scholar
  41. 41.
    Lázár, K.: Application of Mössbauer spectroscopy to distinguish among local environments of iron in porous ferrisilicates. In: Halász, I. (ed.) Silica and Silicates in Modern Catalysis, pp. 81–101. Transworld (2010)Google Scholar
  42. 42.
    Lázár, K., Lejeune, G., Ahedi, R.K., Shevade, S.S., Kotasthane, A.N.: Interpreting the oxidative catalytic activity in iron-substitiuted ferrierites using in situ Mössbauer spectroscopy. J. Phys. Chem. B 102, 4865–4870 (1998)CrossRefGoogle Scholar
  43. 43.
    Panov, G.I., Kharitonov, A.S., Sobolev, V.I.: Oxidative hydroxylation using dinitrogen monoxide: a possible route for organic synthesis over zeolites. Appl. Catal., A Gen. 98, 1–20 (1993)CrossRefGoogle Scholar
  44. 44.
    Dubkov, K.A., Ovanesyan, N.S., Shteinman, S.S., Starokon, E.V., Panov, G.I.: Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites. J. Catal. 207, 341–352 (2002)CrossRefGoogle Scholar
  45. 45.
    Taboada, J.B., Overweg, A.R., Kooyman, P.J., Arends, I.W.C.E., Mul, G.: Following the evolution f iron from framework to extra-framework positions in isomorphously substituted [Fe,Al]MFI with 57Fe Mössbauer spectroscopy. J. Catal. 231, 56–66 (2005)CrossRefGoogle Scholar
  46. 46.
    Lázár, K., Pozdnyakova, O., Wootsch, A., Fejes, P.: Iron ions in ZSM-5 zeolite: Fe3 +  in framework Fe2 +  in extra-framework positions in catalytic N2O decomposition. Hyperfine Interact. 167, 779–784 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Lázár, K., Pál-Borbély, G., Szegedi, Á., Beyer, H.K.: Coordination and oxidation states of iron incorporated into MCM-41. Stud. Surf. Sci. Catal. 142, 1347–1354 (2002)CrossRefGoogle Scholar
  48. 48.
    Lázár, K., Calleja, G., Melero, J.A., Martinez, F., Molina, R.: Influence of synthesis routes on the state of Fe-species in SBA-15 mesoporous materials. Stud. Surf. Sci. Catal. 154, 805–812 (2004)CrossRefGoogle Scholar
  49. 49.
    Lázár, K., Cejka, J.: Valency and coordination of iron in FeAlPO molecular sieves: an in situ Mössbauer study. Stud. Surf. Sci. Catal. 125, 213–220 (1999)CrossRefGoogle Scholar
  50. 50.
    Lázár, K., Szeleczky, A.M., Mal, N.K., Ramaswamy, A.V.: In situ 119Sn-Mössbauer spectroscopic study on MFI, MEL, and MTW tin silicalites. Zeolites 19, 123–127 (1997)CrossRefGoogle Scholar
  51. 51.
    Chaudhari, K., Das, T.K., Rajmohanan, P.R., Lázár, K., Sivasanker, S., Chandwadkar, A.J.: Synthesis, characterization, and catalytic properties of mesoporous tin-containing analogs of MCM-41. J. Catal. 183, 281–291 (1999)CrossRefGoogle Scholar
  52. 52.
    Ramaswamy, V., Shah, P., Lázár, K., Ramaswamy, A.W.: Synthesis, characterization and catalytic activity of Sn-SBA-15 mesoporous molecular sieves. Catal. Surv. Asia 12, 283–309 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Centre for Energy Research, Institute of IsotopesHungarian Academy of SciencesBudapestHungary

Personalised recommendations