Skip to main content
Log in

Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

It is reported a novel method to prepare magnetic core (iron oxide spinels)–shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core–shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrade, A.L., Valente, M.A., Ferreira, J.M.F., Fabris, J.D.: J. Magn. Magn. Mater. 324, 1753 (2012)

    Article  ADS  Google Scholar 

  2. Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D., Domingues, R.Z.: Quim. Nova 33, 524 (2010)

    Article  Google Scholar 

  3. Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D., Domingues, R.Z.: J. Nanosci. Nanotechnol. 9, 2081 (2009)

    Article  Google Scholar 

  4. Sun, S.H., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.X.: J. Am. Chem. Soc. 126, 273 (2004)

    Article  Google Scholar 

  5. Elkins, K.E., Vedantam, T.S., Liu, J.P., Zeng, H., Sun, S.H., Ding, Y., Wang, Z.L.: Nano Lett. 3, 1647 (2003)

    Article  ADS  Google Scholar 

  6. Song, O., Zhang, Z.J.: J. Am. Chem. Soc. 126, 6164 (2004)

    Article  Google Scholar 

  7. Babincova, M., Babinec, P., Bergemann, C.: Z. Nat. Forsch. C. J. Biosci. 56, 909 (2001)

    Google Scholar 

  8. Wang, Y.X.J., Hussain, S.M., Krestin, G.P.: Eur. Radiol. 11, 2319 (2001)

    Article  Google Scholar 

  9. Berry, C.C., Curtis, A.S.G.: J. Phys. D Appl. Phys. 36, R198 (2003)

    Article  ADS  Google Scholar 

  10. Bonnemain, B.: J. Drug Target. 6, 167 (1998)

    Article  Google Scholar 

  11. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R.N.: Chem. Rev. 108, 2064 (2008)

    Article  Google Scholar 

  12. Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: J. Mater. Chem. 14, 2161 (2004)

    Article  Google Scholar 

  13. Katz, E., Willner, I.: Angew. Chem. 43, 6042 (2004)

    Article  Google Scholar 

  14. Matsunaga, T., Okamura, Y., Tanaka, T.: J. Mater. Chem. 14, 2099 (2004)

    Article  Google Scholar 

  15. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: J. Phys. D Appl. Phys. 36, R167 (2003)

    Article  ADS  Google Scholar 

  16. Nielsen, O.S., Horsman, M., Overgaard, J.: Eur. J. Cancer 37, 1587 (2001)

    Article  Google Scholar 

  17. Qu, S.C., Yang, H.B., Ren, D.W., Kan, S.H., Zou, G.T., Li, D.M., Li, M.H.: J. Colloid Interface Sci. 215, 190 (1999)

    Article  Google Scholar 

  18. Stober, W., Fink, A., Bohn, E.: J. Colloid Interface Sci. 26, 62 (1968)

    Article  Google Scholar 

  19. Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D., Domingues, R.Z.: Cerâmica 55, 420 (2009)

    Article  Google Scholar 

  20. Hyon, S.H., Cha, W.I., Ikada, Y.: Polym. Bull. 22, 119 (1989)

    Article  Google Scholar 

  21. Andrade, A.L., Fabris, J.D., Ardisson, J.D., Valente, M.A., Ferreira, J.M.F.: J. Nanomater. 2012, 1 (2012)

    Google Scholar 

  22. Schwertmann, U., Cornell, R.M.: In: Schwertmann, U., Cornell, R.M. (eds.) Iron Oxides in the Laboratory: Preparation and Characterization (1991)

  23. Ouasri, A., Rhandour, A., Dhamelincourt, M.C., Dhamelincourt, P., Mazzah, A.: Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 58, 2779 (2002)

    Article  ADS  Google Scholar 

  24. Li, Y.S., Church, J.S., Woodhead, A.L., Moussa, F.: Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 76, 484 (2010)

    Article  ADS  Google Scholar 

  25. Barrado, E., Prieto, F., Medina, J., Lopez, F.A.: J. Alloys Compd. 335, 203 (2002)

    Article  Google Scholar 

  26. de Vidales, J.L.M., Lopez-Delgado, A., Vila, E., Lopez, F.A.: J. Alloys Compd. 287, 276 (1999)

    Article  Google Scholar 

  27. Ma, M., Zhang, Y., Yu, W., Shen, H.Y., Zhang, H.Q., Gu, N.: Colloids Surf., A Physicochem. Eng. Asp. 212, 219 (2003)

    Article  Google Scholar 

  28. Erdemoglu, M., Sarikaya, M.: J. Colloid Interface Sci. 300, 795 (2006)

    Article  Google Scholar 

  29. Erne, B.H., Butter, K., Kuipers, B.W.M., Vroege, G.J.: Langmuir 19, 8218 (2003)

    Article  Google Scholar 

  30. Wang, X.M., Gu, H.C., Yang, Z.Q.: J. Magn. Magn. Mater. 293, 334 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José D. Fabris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, A.L., Fabris, J.D., Pereira, M.C. et al. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia. Hyperfine Interact 218, 71–82 (2013). https://doi.org/10.1007/s10751-012-0681-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-012-0681-9

Keywords

Navigation