Skip to main content
Log in

Double Λ-hypernuclei at the PANDA experiment

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). Thanks to the use of stored \(\overline{p}\) beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time. At PANDA excited states of Ξ− hypernuclei will be used as a starting point for the formation of double Λ hypernuclei. In order to predict the yield of particle stable double hypernuclei a microcanonical decay model was developed. For the detection of these nuclei, a devoted hypernuclear detector setup is planned. This set-up consists, in addition to the general purpose of the PANDA set-up, of a primary nuclear target for the production of \(\Xi^{-}+\overline{\Xi}\) pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Furthermore, the presence of \(\overline{\Xi}\) can be used as an alternative to tag the strangeness in the \(\Xi^{-}+\overline{\Xi}\). All systems need to operate in the presence of a high magnetic field and a large hadronic background. In the present talk details concerning simulations, the identification procedure of double hypernuclei and the suppression of background will be presented. In addition, the present status of the detector developments for this programme will be briefly given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons. arXiv:0903.3905v1

  2. Kerman, A.K., Weiss, M.S.: Phys. Rev. C 8, 408 (1973)

    Article  ADS  Google Scholar 

  3. Botvina, A.S., Pochodzalla, J.: Phys. Rev. C 76, 024909 (2007)

    Article  ADS  Google Scholar 

  4. Yamamoto, Y., Sano, M., Wakai, M.: Prog. Theor. Phys. Suppl. 117, 265 (1994)

    Article  ADS  Google Scholar 

  5. Hirata, Y., et al.: Nucl. Phys. A 639, 389c (1998)

  6. Yamamoto, Y., Wakai, M., Motoba, T., Fukuda, T.: Nucl. Phys. A 625, 107 (1997)

    Article  ADS  Google Scholar 

  7. Hirata, Y., et al.: Prog. Theor. Phys. 102, 89 (1999)

    Article  ADS  Google Scholar 

  8. Aoki, S., et al., KEK E176 Collaboration: Nucl. Phys. A 828, 191 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Yamada, T., Ikeda, K.: Phys. Rev. C 56, 3216 (1997)

    Article  ADS  Google Scholar 

  10. Ohnishi, A., Hirata, Y., Nara, Y., Shinmura, S., Akaishi, Y.: Nucl. Phys. A 684, 595 (2001)

    Article  ADS  Google Scholar 

  11. Ikeda, K., et al.: Prog. Theor. Phys. 91, 747 (1994)

    Article  ADS  Google Scholar 

  12. Yamamoto, Y., Motoba, T., Fukuda, T., Takahashi, M., Ikeda, K.: Prog. Theor. Phys. Suppl. 117, 281 (1994)

    Article  ADS  Google Scholar 

  13. Batty, C.J., Friedman, E., Gal, A.: Phys. Rev. C 59, 295–304 (1999)

    Article  ADS  Google Scholar 

  14. Pochodzalla, J.: Nucl. Phys. A 754, 430c (2005)

  15. Fermi, E.: Progr. Theor. Phys. 5, 570 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  16. Sanchez Lorente, A., Botvina, A., Pochodzalla, J.: Phys. Lett. B 697, 222 (2011)

    Article  ADS  Google Scholar 

  17. Bondorf, J.P., et al.: Phys. Rep. 257, 133 (1995)

    Article  ADS  Google Scholar 

  18. Hiyama, E., et al.: Phys. Rev. 66, 024007 (2002)

    MathSciNet  ADS  Google Scholar 

  19. Yamada, T., Ikeda, K.: Phys. Rev. C56, 3216 (1997)

    ADS  Google Scholar 

  20. Ferro, F., et al.: Nucl. Phys. A 789, 209 (2007)

    Article  ADS  Google Scholar 

  21. Sanchez Lorente, A., et al.: Nucl. Instrum. Methods A 573, 410 (2007)

    Article  Google Scholar 

  22. Bamberger, A., et al.: Nucl. Phys. B 60, 1 (1973)

    Article  ADS  Google Scholar 

  23. Bedjidian, M., et al.: Phys. Lett. 62, 467 (1976)

    Google Scholar 

  24. May, M., et al.: Phys. Rev. Lett. 51, 2085 (1983)

    Article  ADS  Google Scholar 

  25. Akikawa, H., et al.: Phys. Rev. Lett. 88, 082501-1 (2002)

    Article  ADS  Google Scholar 

  26. Steinen, M.: Master Thesis, under preparation

  27. Bleser, S.: PhD. Thesis, under preparation

  28. J. M. Heuser, et al.: HadronPhysics2, http://hadronphysics2.eu, work package 26, ULISI

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Alicia Sanchez Lorente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez Lorente, A., on behalf of the P̅ANDA Collaboration. Double Λ-hypernuclei at the PANDA experiment. Hyperfine Interact 213, 41–50 (2012). https://doi.org/10.1007/s10751-011-0394-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0394-5

Keywords

Navigation