Advertisement

Hyperfine Interactions

, Volume 212, Issue 1–3, pp 69–80 | Cite as

Towards the measurement of the ground-state hyperfine splitting of antihydrogen

  • Bertalan JuhászEmail author
Article

Abstract

The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than ∼ 10 − 6. The first preliminary measurements of the hyperfine transitions will start in 2011.

Keywords

Antihydrogen Spectroscopy Hyperfine splitting CPT symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramsey, N.F.: Rev. Mod. Phys. 62, 541 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Carlson, C.E., Nazaryan, V., Griffioen, K.: Phys. Rev. A 78, 022517 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Kreissl, A., et al.: Z. Phys. C 37, 557 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Pask, T., et al.: Phys. Lett. B 678, 55 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Bluhm, R., Kostelecký, V.A., Russell, N.: Phys. Rev. Lett. 82, 2254 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Amsler, C., et al. (Particle Data Group): Phys. Lett. B 667, 1 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Andersen, G.B., et al.: Nature 468, 673 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Andersen, G.B., et al.: Nat. Phys. 7, 558 (2011)CrossRefGoogle Scholar
  9. 9.
    ASACUSA proposal addendum CERN/SPSC 2005-002, SPSC P-307 Add.1 (2005)Google Scholar
  10. 10.
    Juhász, B., Widmann, E.: Hyperfine Interact. 193, 305 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Mohri, A., Yamazaki, Y.: Europhys. Lett. 63, 207 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Enomoto, Y., et al.: Phys. Rev. Lett. 105, 243401 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Pohl, T., Sadeghpour, H.R., Nagata, Y., Yamazaki, Y.: Phys. Rev. Lett. 97, 213001 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Agostinelli, S., et al.: Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Kusch, P., Hughes, V.W.: In: Flügge, S. (ed.) Encyclopedia of Physics, vol. XXXVII/1, p. 56. Springer, Berlin (1959)Google Scholar
  16. 16.
    Kroyer, T.: CERN Report CERN-AB-Note-2008-016 (2008)Google Scholar
  17. 17.
    Federmann, S., Caspers, F., Mahner, E., Juhász, B., Widmann, E.: 1st Int. Particle Accelerator Conf. (Kyoto) (Kyoto: IPAC’10 OC/ACFA), p. 1095 (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Stefan Meyer Institute for Subatomic PhysicsAustrian Academy of SciencesViennaAustria

Personalised recommendations