Skip to main content
Log in

Compression of positron clouds using rotating wall electric fields

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

An asymmetric dipolar rotating electric field can be used to compress a trapped cloud of positrons when applied with a frequency close that of their axial bounce, and in the presence of a low pressure molecular gas to provide cooling. Measurements of the compression rate and associated parameters are presented and compared with results of a theory we have developed. The latter treats positron behaviour in a perfect Penning trap potential, in the presence of the rotating field, with the cooling modelled in the Stokes viscous drag approximation. Good agreement between the theory and experiment has been found, which has allowed us to identify the phenomenon as a new form of sideband cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amoretti, M., et al.: Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  2. Gabrielse, G., et al.: Phys. Rev. Lett. 89, 213401 (2002)

    Article  ADS  Google Scholar 

  3. Andresen, G.B., et al.: Nature 468, 673 (2010)

    Article  ADS  Google Scholar 

  4. Cassidy, D.B., Mills A.P., Jr.: Nature 449, 195 (2007)

    Article  ADS  Google Scholar 

  5. Jørgensen, L.V., et al.: Phys. Rev. Lett. 95, 025002 (2005)

    Article  ADS  Google Scholar 

  6. Dubin, D.H.E., O’Neil, T.M.: Rev. Mod. Phys. 71, 87 (1999)

    Article  ADS  Google Scholar 

  7. Brown, L.S., Gabrielse, G.: Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  8. Huang, X.P., Anderegg, F., Hollmann, E., Driscoll, C., O’Neil, T.: Phys. Rev. Lett. 78, 875 (1997)

    Article  ADS  Google Scholar 

  9. Anderegg, F., Hollmann, E.M., Driscoll, C.F.: Phys. Rev. Lett. 81, 4875 (1998)

    Article  ADS  Google Scholar 

  10. Danielson, J.R., Surko, C.M.: Phys. Rev. Lett. 94, 035001 (2005)

    Article  ADS  Google Scholar 

  11. Danielson, J.R., Surko, C.M., O’Neil, T.M.: Phys. Rev. Lett. 99, 135005 (2007)

    Article  ADS  Google Scholar 

  12. Wineland, D., Dehmelt, H.: Int. J. Mass Spectrom. Ion Process. 16, 338 (1974)

    Google Scholar 

  13. Savard, G.: et al.: Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  14. Powell, H.F., Segal, D.M., Thompson, R.C.: Phys. Rev. Lett. 89, 093003 (2002)

    Article  ADS  Google Scholar 

  15. Kellerbauer, A., et al.: Phys. Rev. A 73, 062508 (2006)

    Article  ADS  Google Scholar 

  16. Cassidy, D.B., Deng, S.H.M., Greaves, R.G., Mills, A.P., Jr.: Rev. Sci. Instrum. 77, 073106 (2006)

    Article  ADS  Google Scholar 

  17. Greaves, R.G., Moxom, J.M.: Phys. Plasmas 15, 072304 (2008)

    Article  ADS  Google Scholar 

  18. Clarke, J., et al.: Rev. Sci. Instrum. 77, 063302 (2006)

    Article  ADS  Google Scholar 

  19. Surko, C.M., Gribakin, G.F., Buckman, S.J.: J. Phys. B At. Mol. Opt. Phys. 41, 081001 (2008)

    Article  ADS  Google Scholar 

  20. Greaves, R.G., Surko, C.M.: Phys. Rev. Lett. 85, 1883 (2000)

    Article  ADS  Google Scholar 

  21. Al-Qaradawi, I., Charlton, M., Borozan, I., Whitehead, R.: J. Phys. B At. Mol. Opt. Phys. 33, 2725 (2000)

    Article  ADS  Google Scholar 

  22. Isaac, C.A.: Axialisation of Particles in a Penning-type Trap by the Application of a Rotating Dipole Electric Field and its Application to Positron Accumulation. Swansea University (2011)

  23. Isaac, C.A., Baker, C.J., Mortensen, T., van der Werf, D.P., Charlton, M.: Phys. Rev. Lett. 107, 033201 (2011)

    Google Scholar 

  24. Malmberg, J.H., Driscoll, C.F.: Phys. Rev. Lett. 44, 654 (1980)

    Article  ADS  Google Scholar 

  25. Notte, J., Fajans, J.: Phys. Plasmas 1, 1123 (1994)

    Article  ADS  Google Scholar 

  26. Charlton, M., Humberston, J.W.: Positron Physics. Cambridge University Press (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Peter van der Werf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Werf, D.P., Isaac, C.A., Baker, C.J. et al. Compression of positron clouds using rotating wall electric fields. Hyperfine Interact 212, 125–132 (2012). https://doi.org/10.1007/s10751-011-0384-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0384-7

Keywords

Navigation