Hyperfine Interactions

, Volume 212, Issue 1–3, pp 51–59 | Cite as

GBAR

Gravitational behavior of antihydrogen at rest
Article

Abstract

The GBAR project aims to perform the first test of the Equivalence Principle with antimatter by measuring the free fall of ultra-cold antihydrogen atoms. The objective is to measure the gravitational acceleration to better than a percent in a first stage, with a long term perspective to reach a much higher precision using gravitational quantum states of antihydrogen. The production of ~20 μK atoms proceeds via sympathetic cooling of \(\mathrm{\overline{H}^+}\) ions by Be +  ions. \(\mathrm{\overline{H}^+}\) ions are produced via a two-step process, involving the interaction of bursts of 107 slow antiprotons from the AD (or ELENA upgrade) at CERN with a dense positronium cloud. In order to produce enough positronium, it is necessary to realize an intense source of slow positrons, a few 108 per second. This is done with a small electron linear accelerator. A few 1010 positrons are accumulated every cycle in a Penning–Malmberg trap before they are ejected onto a positron-to-positronium converter. The overall scheme of the experiment is described and the status of the installation of the prototype positron source at Saclay is shown. The accumulation scheme of positrons is given, and positronium formation results are presented. The estimated performance and efficiency of the various steps of the experiment are given.

Keywords

Antihydrogen Gravitation Antimatter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scherk, J.: Antigravity: a crazy idea? Phys. Lett. B 88, 265–267 (1979)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Chardin, G.: Motivations for antigravity in general relativity. Hyperfine Interact. 109, 83–94 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    CP LEAR collaboration: Tests of the equivalence principle with neutral kaons. Phys. Lett. B 452, 425–433 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Gabrielse, G., et al.: Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198–3201 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Nieto, M.M., Goldman, T.: The arguments against antigravity and the gravitational acceleration of antimatter. Phys. Rep. 205, 221–281 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Pakvasa, S., Simmons, W., Weiler, T.: Test of equivalence principle for neutrinos and antineutrinos. Phys. Rev. D 39, 1761–1763 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Witteborn, F., Fairbank, W.: Experimental comparison of the gravitational force on freely falling electrons and metallic electrons. Phys. Rev. Lett. 19, 1049–1052 (1967)ADSCrossRefGoogle Scholar
  8. 8.
    Beverini, N., Billen, J.H., Bonner, B.E., Bracci, L., Brown, R.E., Campbell, L.J., et al.: PS200 proposal, Los Alamos National Laboratory report, LAUR-86-260 (1986)Google Scholar
  9. 9.
    Brando, T.: Observations of low-energy antineutrons in a time-separated neutral beam. Nucl. Instrum. Methods 180, 461–467 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    Mills, A.P.: Positronium molecule formation, Bose–Einstein condensation and stimulated annihilation. Nucl. Instrum. Methods Phys. Res., B 192, 107–116 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Pérez, P., et al.: A new path to measure antimatter free fall. CERN-SPSC-2007-038 (2007)Google Scholar
  12. 12.
    Walz, J., Haensch, T.: A proposal to measure antimatter gravity using ultracold antihydrogen atoms. Gen. Relativ. Gravit. 36, 561–570 (2004)ADSMATHCrossRefGoogle Scholar
  13. 13.
    Merrison, J.P., et al.: Hydrogen formation by proton impact on positronium. Phys. Rev. Lett. 78, 2728–2731 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Walters, H.R.J., Starrett, C.: Positron and positronium scattering. Phys. Stat. Sol. C 4, 3429–3436 (2007)Google Scholar
  15. 15.
    Oshima, N., et al.: New scheme for positron accumulation in ultrahigh vacuum. Phys. Rev. Lett. 93, 195001 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Liszkay, L., et al.: Positronium reemission yield from mesostructured silica films. Appl. Phys. Lett. 92, 063114 (2008)CrossRefGoogle Scholar
  17. 17.
    Crivelli, P., et al.: Measurement of the ortho-positronium confinement energy in mesoporous thin films. Phys. Rev. A 81, 052703 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Cassidy, D.B., et al.: Positronium cooling in porous silica measured via doppler spectroscopy. Phys. Rev. A 81, 012715 (2010)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Roy, S., Sinha, C.: Formation of negative hydrogen ion in positronium-hydrogen collisions. Eur. Phys. J. D 47, 327–334 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Barrett, M.D., et al.: Sympathetic cooling of 9B +  and 24Mg +  for quantum logic. Phys. Rev. A 68, 042302 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Smith, S.J., Burch, D.S.: Relative measurement of the photodetachment cross section for H − . Phys. Rev. 116, 1125–1131 (1959)ADSCrossRefGoogle Scholar
  22. 22.
    Lykke, K.R., Murray, K.K., Lineberger, W.C.: Threshold photodetachment of H − . Phys. Rev. A 43, 6104–6107 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    Voronin, A.Yu., Froelich, P., Nesvizhevsky, V.V.: Gravitational quantum states of antihydrogen. Phys. Rev. A 83, 032903 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.CEA/DSM/IRFUGif-sur-Yvette CedexFrance

Personalised recommendations