Skip to main content
Log in

Smooth driving of Mössbauer electromechanical transducers

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Quality of Mössbauer spectra is strongly related to the performance of source velocity modulator. Traditional electromechanical driving techniques demand hard-edged square or triangular velocity waveforms that introduce long settling times and demand careful driver tuning. For this work, the behavior of commercial velocity transducers and drive units was studied under different working conditions. Different velocity reference waveforms in constant-acceleration, constant-velocity and programmable-velocity techniques were tested. Significant improvement in spectrometer efficiency and accuracy was achieved by replacing triangular and square hard edges with continuous smooth-shaped transitions. A criterion for best waveform selection and synchronization is presented and attainable enhancements are evaluated. In order to fully exploit this driving technique, a compact microprocessor-based architecture is proposed and a suitable data acquisition system implementation is presented. System linearity and efficiency characterization are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cranshaw, T.E.: Mössbauer spectroscopy. J. Phys. E: Sci. Instrum. 7, 497–507 (1974)

    Article  ADS  Google Scholar 

  2. Kankeleit, E.: Velocity spectrometer for Mössbauer experiments. Rev. Sci. Instrum. 35, 194–197 (1964)

    Article  ADS  Google Scholar 

  3. Gaitanis, N., Kostikas, A., Simopoulos, A.: A constant acceleration Mössbauer spectrometer with velocity range selectivity. Nucl. Instrum. Methods 75, 274–276 (1969)

    Article  ADS  Google Scholar 

  4. Lipkin, J., Schechter, B., Shtrikman, S., Treves, D.: Inexpensive automatic recording Mössbauer spectrometer. Rev. Sci. Instrum. 35, 1336–1339 (1964)

    Article  ADS  Google Scholar 

  5. Sarma, P.R., Sharma, A.K., Tripathi, K.C.: A constant velocity Mössbauer spectrometer free of long-term instrumental and radioactive decay drifts in the count rate. Nucl. Instrum. Methods 164, 591–593 (1979)

    Article  ADS  Google Scholar 

  6. Rubin, D.: Constant acceleration transducer employing negative feedback for use in Mössbauer experiments. Rev. Sci. Instrum. 33, 1358–1360 (1962)

    Article  ADS  Google Scholar 

  7. Seberini, M.: A constant velocity Mössbauer drive. J. Phys. E: Sci. Instrum. 21, 641–647 (1988)

    Article  ADS  Google Scholar 

  8. Veiga, A., Martínez, N., Mayosky, M., Spinelli, E., Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H.: A constant-velocity Mössbauer spectrometer with controlled temperature swep. Rev. Sci. Instrum. 73, 3579–3583 (2002)

    Article  ADS  Google Scholar 

  9. Veiga, A., Martínez, N., Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H.: Advances in constant-velocity Mössbauer instrumentation. Hyperfine Interact. 167, 905–909 (2006)

    Article  ADS  Google Scholar 

  10. Papoulis, A.: The Fourier Integral and its Applications. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  11. Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H., Veiga, A., Martínez, N.: A new application of Mössbauer effect thermal scans: determination of the magnetic hyperfine field temperature dependence. Phys. Lett. A 298, 55–59 (2002)

    Article  ADS  Google Scholar 

  12. Pasquevich, G.A., Mendoza Zélis, P., Fernández van Raap, M.B., Sánchez, F.H.: Hyperfine field temperature dependence of Fe3Si from Mössbauer thermal scans. Physica B 354, 369–372 (2004)

    Article  ADS  Google Scholar 

  13. Saccone, F.D., Rodríguez Torres, C.E., Pasquevich, G.A., Fernández van Raap, M.B., Sánchez, F.H.: Crystallisation kinetics of B-rich mischmetal-Fe-B nanocomposite ribbons. Physica B 354, 237–240 (2004)

    Article  ADS  Google Scholar 

  14. Pasquevich, G.A., Mendoza Zélis, P., Sánchez, F.H., Fernández van Raap, M.B., Veiga, A., Martínez, N.: Determination of the iron magnetic moments dynamics in the nanocrystalline ribbons Fe90Zr7B3 by Mössbauer magnetic scans. Physica B: Condensed Matter. 384, 348–350 (2006)

    Article  ADS  Google Scholar 

  15. Veiga, A., Pasquevich, G.A., Mendoza Zélis, P., Sánchez, F.H., Fernández van Raap, M.B., Martínez, N.: Experimental design and methodology for a new Mössbauer scan experiment: absorption line tracking. Hyperfine Interact. 188, 137–142 (2009)

    Article  ADS  Google Scholar 

  16. Mendoza Zélis, P., Pasquevich, G.A., Veiga, A., Fernández van Raap, M.B., Sánchez, F.H.: A quasi-continuous observation of the α-transition of Fe1+xS by Mössbauer line tracking. Hyperfine Interact. 195, 161–165 (2010)

    Article  ADS  Google Scholar 

  17. Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H., Veiga, A., Ceolin, M., Cabrera, A.F., Coronado-Miralles, E., Monrabal-Capilla, M., Galan-Mascaros, J.R.: Mössbauer thermal scan study of a spin crossover system. J. Phys.: Conf. Series 217, 012017 (2010)

    Article  ADS  Google Scholar 

  18. Pasquevich, G.A., Veiga, A., Mendoza Zélis, P., Sánchez, F.H.: Optimal configuration for programmable Mössbauer experiments. J. Phys.: Conf. Series 217, 012139 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veiga, A., Mayosky, M.A., Martínez, N. et al. Smooth driving of Mössbauer electromechanical transducers. Hyperfine Interact 202, 107–115 (2011). https://doi.org/10.1007/s10751-011-0342-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0342-4

Keywords

Navigation