Skip to main content
Log in

Dipolar and quadrupolar detection using an FT-ICR MS setup at the MPIK Heidelberg

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Dipolar and single-phase two-electrode quadrupolar detection schemes have been investigated at a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) setup built for the KATRIN experiment at the Max-Planck-Institute for Nuclear Physics (MPIK) in Heidelberg. We present first experimental results of 7Li +  signals from a cylindrical Penning trap configuration for both detection schemes. While the prominent signal of the conventional dipolar detection scheme marks the reduced cyclotron frequency, the main signal for the quadrupolar detection appears at the sum of the reduced cyclotron frequency and the magnetron frequency. For ideal trapping fields, this sum frequency equals the ion cyclotron frequency ν c  = qB/(2πm). Sidebands due to the combined motions of the cyclotron mode and magnetron mode are observed by quadrupolar detection which allows the determination of the respective combinations of eigenfrequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh, P.K.: Ion Traps. International series of monographs on physics 90, Clarendon Press, Oxford (1995) ISBN: 0-19-853995-9

    Google Scholar 

  2. Major, F.G., Gheorghe, V., Werth, G.: Charged Particle Traps. Springer, Heidelberg (2005)

    Google Scholar 

  3. Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  4. Gabrielse, G.: The true cyclotron frequency for particles and ions in a Penning trap. Int. J. Mass Spectrom. 279, 107 (2009)

    Article  ADS  Google Scholar 

  5. Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  6. Blaum, K., Novikov, Yu. N., Werth, G.: Penning traps as a versatile tool for precise experiments in fundamental physics. Cont. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  7. Schweikhard, L., Bollen, G. (eds.): Ultra accurate mass spectrometry and related topics. Int. J. Mass Spectrom. (Special issue) 251, (2006)

  8. Mukherjee, M., et al.: ISOLTRAP: an on-line Penning trap for mass spectrometry on short-lived nuclides. Eur. Phys. J. A35, 1 (2008)

    ADS  Google Scholar 

  9. Ringle, R., et al.: Precision mass measurement with LEBIT at MSU. Int. J. Mass Spectrom. 251, 300 (2006)

    Article  ADS  Google Scholar 

  10. Clark, J., et al.: Improvements in the injection system of the Canadian Penning trap mass spectrometer. Nucl. Instrum. Methods B 204, 487 (2003)

    Article  ADS  Google Scholar 

  11. Dilling, J., et al.: Mass measurements on highly charged radioactive ions, a new approach to high precision with TITAN. Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  12. Ketelaer, J., et al.: TIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instrum. Methods A 594, 162 (2008)

    Article  ADS  Google Scholar 

  13. Jokinen, A., et al.: Precision experiments on exotic nuclei at IGISOL. Int. J. Mass Spectrom. 251, 204 (2006)

    Article  ADS  Google Scholar 

  14. Block, M., et al.: Direct mass measurement above uranium bridge the gap to the island of stability. Nature 463, 785 (2010)

    Article  ADS  Google Scholar 

  15. Rauth, C., et al.: Direct mass measurements around A=146 at SHIPTRAP. Eur. Phys. J. (Special Topics) 150, 329 (2007)

    Article  ADS  Google Scholar 

  16. Graeff, G., Kalinowsky, H., Traut, J.: A direct determination of the proton electron mass ratio. Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  17. Comisarow, M.B., Marshall, A.G.: Fourier transform ion cyclotron resonance spectroscopy. J. Chem. Phys. 25, 282 (1974)

    Google Scholar 

  18. Comisarow, M.B.: Fundamental aspects of FT-ICR and application to chemistry. Hyperfine Interact. 81, 171 (1993)

    Article  ADS  Google Scholar 

  19. Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectroscopy: a primer. Mass Spectrom. Rev. 17, 1 (1998)

    Article  Google Scholar 

  20. Dunbar, R.C.: The effect of ion position on ICR signal strength. Int. J. Mass Spectrom. Ion Process. 56, 1 (1983)

    Article  Google Scholar 

  21. Otten, E.W., Weinheimer, C.: Neutrino mass limit from tritium β decay. Rep. Prog. Phys. 71, 086201 (2008)

    Article  ADS  Google Scholar 

  22. Ubieto-Díaz, M., Rodríguez, D., Lukic, S., Nagy, Sz., Stahl, S., Blaum, K.: A broad-band FT-ICR Penning trap system for KATRIN. Int. J. Mass Spectrom. 288, 1 (2009)

    Article  ADS  Google Scholar 

  23. Ketelaer, J., et al.: Recent developments in ion detection techniques for Penning trap mass spectrometry at TRIGA-TRAP. Eur. Phys. J. A42, 311 (2009)

    ADS  Google Scholar 

  24. Eitel, G., et al.: Position-sensitive ion detection in precision Penning trap mass spectrometry. Nucl. Instrum. Methods A 606, 474 (2009)

    Article  ADS  Google Scholar 

  25. Rodríguez, D., Blaum, K., Cakirli, R.B., Heck, M., Schweikhard, L., Stahl, S., Ubieto-Díaz, M.: Broad-band FT-ICR MS for the Penning-trap mass spectrometer MATS. AIP Conf. Proc. 1265, 483 (2010)

    Article  ADS  Google Scholar 

  26. Martinez, F., Herlert, A., Marx, G., Schweikhard, L., Walsh, N.: Unintended parametric ejection of ions from an ion cyclotron resonance trap by two-electrode axialization. Eur. J. Mass Spectrom. 15, 283 (2009)

    Article  Google Scholar 

  27. Schweikhard, L., Lindinger, M., Kluge, H.-J.: Quadrupole-detection FT-ICR mass spectrometry. Int. J. Mass Spectrom. Ion Process. 98, 25 (1990)

    Article  Google Scholar 

  28. Schweikhard, L., Blundschling, M., Jertz, R., Kluge, H.-J.: A new detection scheme for Fourier transform-ion cyclotron resonance spectrometry in Penning traps. Rev. Sci. Instrum. 60, 2631 (1989)

    Article  ADS  Google Scholar 

  29. Schweikhard, L.: Theory of quadrupole detection Fourier transform ion cyclotron resonance. Int. J. Mass Spectrom. Ion Procees. 107, 281 (1991)

    Article  ADS  Google Scholar 

  30. Schweikhard, L., Marshall, A.G.: Excitation modes for Fourier transform-ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 433 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Heck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heck, M., Blaum, K., Cakirli, R.B. et al. Dipolar and quadrupolar detection using an FT-ICR MS setup at the MPIK Heidelberg. Hyperfine Interact 199, 347–355 (2011). https://doi.org/10.1007/s10751-011-0330-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0330-8

Keywords

Navigation