Hyperfine Interactions

, Volume 199, Issue 1–3, pp 291–300 | Cite as

Progress with the MPIK/UW-PTMS in Heidelberg

  • Christoph Diehl
  • Klaus Blaum
  • Martin Höcker
  • Jochen Ketter
  • David B. Pinegar
  • Sebastian Streubel
  • Robert S. Van DyckJr.
Article

Abstract

The precise determination of the 3He/3H mass ratio, and hence the tritium β-decay endpoint energy E0, is of relevance for the measurement of the electron anti-neutrino mass performed by the Karlsruhe Tritium Neutrino experiment (KATRIN). By determining this ratio to an uncertainty of 1 part in 1011, systematic errors of E0 can be checked in the data analysis of KATRIN. To reach this precision, a Penning Trap Mass Spectrometer was constructed at the University of Washington and has been transferred to the Max Planck Institute for Nuclear Physics in Heidelberg at the end of 2008. Since then it is called MPIK/UW-PTMS. Special design features are the utilization of an external ion source and a double trap configuration. The external Penning ion source efficiently ionizes the helium and tritium gas and can give superior elimination of unwanted ion species compared to the previously utilized in-trap-ionization by electrons from a field-emission point. The design as a double Penning trap allows a faster measurement procedure. This should help to avoid problems resulting from long-term drifts in the experimental conditions. Additionally, the laboratory in Heidelberg was carefully prepared to have very stable environmental conditions. Experimental challenges and the first Heidelberg results with the new spectrometer are presented.

Keywords

Penning trap mass spectrometry 3H/3He Q-value determination Environment stabilization Non-destructive detection technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fukuda, Y., et al.: Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Lesgourgues, J., Pastor, S.: Massive neutrinos and cosmology. Phys. Rep. 429, 307–379 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Avignone, III, F.T., Elliott, S.R., Engel, J.: Double beta decay, majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481–516 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Otten, E.W., Weinheimer, C.: Neutrino mass limit from tritium β-decay. Rep. Prog. Phys. 71, 086201 (2008)CrossRefGoogle Scholar
  5. 5.
    Drexlin, G.: KATRIN-direct measurement of a sub-eV neutrino mass. Nucl. Phys. B Proc. Suppl. 145, 263–267 (2005)CrossRefGoogle Scholar
  6. 6.
    Otten, E.W., Bonn, J., Weinheimer, Ch.: The Q-value of tritium β-decay and the neutrino mass. Int. J. Mass Spectrom. 251, 173–178 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1–78 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Van Dyck, R.S. Jr., et al.: Ultraprecise atomic mass measurement of the α particle and 4He. Phys. Rev. Lett. 92, 220802/1 (2004)CrossRefGoogle Scholar
  9. 9.
    Rainville, S., Thompson, J.K., Pritchard, D.E.: An ion balance for ultra-high-precision atomic mass measurements. Science 303, 334–338 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Nagy, Sz., et al.: On the Q-value of the tritium β-decay. Europhys. Lett. 74, 404–410 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Van Dyck, R.S., Jr., et al.: The UW-PTMS: systematic studies, measurement progress,and future improvements. Int. J. Mass Spectrom. 251, 231–242 (2006)CrossRefGoogle Scholar
  12. 12.
    Pinegar, D.B.: Tools for a precise tritium to helium-3 mass comparison. PhD thesis, University of Washington, Seattle (2007)Google Scholar
  13. 13.
    Van Dyck, R.S., Jr., et al.: Ultrastable superconducting magnet system for a Penning trap mass spectrometer. Rev. Sci. Instrum. 70, 1665–1671 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Van Dyck, R.S. Jr., Zafonte, S.L., Schwinberg, P.B.: Ultra-precise mass measurements using the UW-PTMS. Hyperfine Interact. 132, 163–175 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Gabrielse, G.: Why is sideband mass spectrometry possible with ions in a Penning trap. Phys. Rev. Lett. 102, 172501 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Wineland, D.J., Dehmelt, H.G.: Principles of the stored ion calorimeter. J. Appl. Phys. 46, 919–930 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    Farnham, D.L., Van Dyck, R.S. Jr., Schwinberg, P.B.: Determination of the electron’s atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. Phys. Rev. Lett. 75, 3598–3601 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Pinegar, D.B., et al.: Stable voltage source for Penning trap experiments. Rev. Sci. Instrum. 89, 064701 (2009)CrossRefGoogle Scholar
  19. 19.
    Marie-Jeanne, M., et al.: Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides. Nucl. Instrum. Methods Phys. Res. A 587, 464–473(2008)ADSCrossRefGoogle Scholar
  20. 20.
    Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Christoph Diehl
    • 1
  • Klaus Blaum
    • 1
  • Martin Höcker
    • 1
  • Jochen Ketter
    • 1
  • David B. Pinegar
    • 1
  • Sebastian Streubel
    • 1
  • Robert S. Van DyckJr.
    • 2
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Physics DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations