Skip to main content
Log in

Precision mass measurements of neutron halo nuclei using the TITAN Penning trap

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Precise atomic mass determinations play a key role in various fields of physics, including nuclear physics, testing of fundamental symmetries and constants and atomic physics. Recently, the TITAN Penning trap measured the masses of several neutron halos. These exotic systems have an extended, diluted, matter distribution that can be modelled by considering a nuclear core surrounded by a halo formed by one or more of loosely bound neutrons. Combined with laser spectroscopy measurements of isotopic shifts precise masses can be used to obtain reliable charge radii and two-neutron-seperation energies for these halo nuclei. It is shown that these results can be used as stringent tests of nuclear models and potentials providing an important metric for our understanding of the interactions in all nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacca, S., et al.: Eur. Phys. J. A 42, 553 (2009)

    Article  ADS  Google Scholar 

  2. Mueller, P., et al.: Phys. Rev. Lett. 99, 252501 (2007)

    Article  ADS  Google Scholar 

  3. Hansen, P.G., Jonson, B.: Europhys. Lett. 4(4), 409 (1987)

    Article  ADS  Google Scholar 

  4. Wang, L.B., et al.: Phys. Rev. Lett. 93, 142501 (2004)

    Article  ADS  Google Scholar 

  5. Sánchez, R., et al.: Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  6. Nörtershäuser, W., et al.: Phys. Rev. Lett. 102, 062503 (2009)

    Article  Google Scholar 

  7. Otten, W.E.: Nuclear Radii and Moments of Unstable Isotopes. Plenum Press, New York (1987)

    Google Scholar 

  8. Drake, G.W.F.: Nucl. Phys. A 737, 25 (2004)

    Article  ADS  Google Scholar 

  9. Dilling, J., et al.: Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  10. Ryjkov, V., et al.: Phys. Rev. Lett. 101, 012501 (2008)

    Article  ADS  Google Scholar 

  11. Smith, M., et al.: Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  12. Ringle, R., et al.: Phys. Lett. B 675, 170 (2009)

    Article  ADS  Google Scholar 

  13. Dombsky, M., et al.: Rev. Sci. Instrum. 71, 978 (2000)

    Article  ADS  Google Scholar 

  14. Smith, M., et al.: Hyperfine Interact. 173, 171 (2006)

    Article  ADS  Google Scholar 

  15. Froese, M., et al.: Hyperfine Interact. 173, 85 (2006)

    Article  ADS  Google Scholar 

  16. Gräff, G., et al.: Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  17. Bollen, G., et al.: J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  18. König, M., et al.: Int. J. Mass Spectrom. Ion. Process. 142, 95 (1995)

    Article  ADS  Google Scholar 

  19. Bollen, G., et al.: Nucl. Phys. A 693, 3 (2001)

    Article  ADS  Google Scholar 

  20. Brodeur, M., et al.: Phys. Rev. C 80, 044318 (2009)

    Article  ADS  Google Scholar 

  21. Audi, G., et al.: Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  22. Bachelet, C., et al.: Phys. Rev. Lett. 100, 182501 (2008)

    Article  ADS  Google Scholar 

  23. Pieper, S.C.: Proceeding of Enrico Fermi School (2007). arXiv:0711.1500

  24. Navrátil, P., et al.: J. Phys. G: Nucl. Part. Phys. 36, 083101 (2009)

    Article  ADS  Google Scholar 

  25. Pieper, S.C.: Nucl. Phys. A 751, 516c (2005)

    Article  ADS  Google Scholar 

  26. Hagen, G., et al.: Phys. Lett. B 656, 169 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Maris, P., Vary, J.P., Shirokov, A.M.: Phys. Rev. C 79, 014308 (2009)

    Article  ADS  Google Scholar 

  28. Pieper, S.C., Wiringa, R.B., Carlson, J.: Phys. Rev. C 70, 054325 (2004)

    Article  ADS  Google Scholar 

  29. Pieper, S.C., et al.: Phys. Rev. C 64, 014001 (2001)

    Article  ADS  Google Scholar 

  30. Jurgenson, E.D., Navrátil, P., Furnstahl, R.J.: Phys. Rev. Lett. 103, 082501 (2009)

    Article  ADS  Google Scholar 

  31. Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  32. Caurier, E., Navrátil, P.: Phys. Rev. C 73, 021302(R) (2006)

    Article  ADS  Google Scholar 

  33. Machleidt, R.: Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  34. Doleschall, P., et al.: Phys. Rev. C 67, 064005 (2003)

    Article  ADS  Google Scholar 

  35. Forssén, C., Caurier, E., Navrátil, P.: Phys. Rev. C 79, 021303(R) (2009)

    Article  ADS  Google Scholar 

  36. Varga, K., Suzuki, Y., Lovas, R.G.: Phys. Rev. C 66, 041302 (2002)

    Article  ADS  Google Scholar 

  37. Thompson, D.R., LeMere, M., Tang, Y.C.: Nucl. Phys. A 286, 53 (1970)

    Article  ADS  Google Scholar 

  38. Torabi, B.R.: Structure of Beryllium Isotopes in Fermionic Molecular Dynamics. Ph.D. thesis, Technischen Universität Darmstadt (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brodeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodeur, M., Brunner, T., Ettenauer, S. et al. Precision mass measurements of neutron halo nuclei using the TITAN Penning trap. Hyperfine Interact 199, 167–173 (2011). https://doi.org/10.1007/s10751-011-0311-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0311-y

Keywords

Navigation