Skip to main content
Log in

Cooling of short-lived, radioactive, highly charged ions with the TITAN cooler Penning trap

Status and perspectives

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

TITAN is an on-line facility dedicated to precision experiments with short-lived radioactive isotopes, in particular mass measurements. The achievable resolution on mass measurement, which depends on the excitation time, is limited by the half life of the radioactive ion. One way to bypass this is by increasing the charge state of the ion of interest. TITAN has the unique capability of charge-breeding radioactive ions using an electron-beam ion trap (EBIT) in combination with Penning trap mass spectrometry. However, the breeding process leads to an increase in energy spread, ΔE, which in turn negatively influences the mass uncertainty. We report on the development of a cooler Penning trap which aims at reducing the energy spread of the highly charged ions prior to injection into the precision mass measurement trap. Electron and proton cooling will be tested as possible routes. Mass selective cooling techniques are also envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  2. Schury, P., et al.: Precision mass measurements of rare isotopes near N = Z = 33 produced by fast beam fragmentation. Phys. Rev. C 75, 055801 (2007)

    Article  ADS  Google Scholar 

  3. Savard, G., et al.: Q value of the superallowed decay of 46V and its influence on V ud and the unitarity of the Cabibbo–Kobayashi–Maskawa matrix. Phys. Rev. Lett. 95, 102501 (2005)

    Article  ADS  Google Scholar 

  4. Dilling, J., et al.: Mass measurements on highly charged radioactive ions, a new approach to high precision with TITAN. Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  5. Dilling, J., et al.: The proposed TITAN facility at ISAC for very precise mass measurements on highly charged short-lived isotopes. Nucl. Instrum. Methods B 204, 492–496 (2003)

    Article  ADS  Google Scholar 

  6. Smith, M., et al.: First Penning-trap mass measurement of the exotic halo nucleus 11Li. Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  7. Ryjkov, V.L., et al.: Direct mass measurement of the four-neutron halo nuclide 8He. Phys. Rev. Lett. 101, 012501 (2008)

    Article  ADS  Google Scholar 

  8. Ringle, R., et al.: High-precision Penning trap mass measurements of 9,10Be and the one-neutron halo nuclide 11Be. Phys. Lett. B 675, 170 (2009)

    Article  ADS  Google Scholar 

  9. Brodeur, M., et al.: New mass measurement of 6Li and ppb-level systematic studies of the Penning trap mass spectrometer TITAN. Phys. Rev. C 80, 044318 (2009)

    Article  ADS  Google Scholar 

  10. Bollen, G., et al.: Mass measurements of short-lived nuclides with ion traps. Nucl. Phys. A 693, 3 (2001)

    Article  ADS  Google Scholar 

  11. Marrs, R.E.: Self-cooling of highly charged ions during extraction from electron beam ion sources and traps. Nucl. Instrum. Methods B 149, 182 (1999)

    Article  ADS  Google Scholar 

  12. Oshima, N., et al.: Project to produce cold highly charged ions using positron and electron cooling techniques. J. Phys. Conf. Ser. 2, 127 (2004)

    Article  ADS  Google Scholar 

  13. Hall, D.S., et al.: Electron cooling of protons in a nested Penning trap. Phys. Rev. Lett. 77, 1962 (1996)

    Article  ADS  Google Scholar 

  14. Ryjkov, V.L., et al.: TITAN project status report and a proposal for a new cooling method of highly charged ions. Eur. Phys. J. A 25, 53 (2005)

    Article  Google Scholar 

  15. Bollen, G., et al.: ISOLTRAP: A tandem Penning trap system for accurate on-line mass determination of short-lived isotopes. Nucl. Instrum. Methods A 368, 675 (1996)

    Article  ADS  Google Scholar 

  16. Rolston, S.L., et al.: Cooling antiprotons in an ion trap. Hyperfine Interact. 44, 233 (1988)

    Article  ADS  Google Scholar 

  17. Ke, Z., et al.: A cooler ion trap for the TITAN on-line trapping facility at TRIUMF. Hyperfine Interact. 173, 103 (2006)

    Article  ADS  Google Scholar 

  18. Ke, Z.: A cooler ion trap for the TITAN on-line trapping facility at TRIUMF. PhD thesis, Univ. of Manitoba, Canada (2008)

  19. Zwicknagel, G., et al.: Electron cooling of highly charged ions in Penning traps. AIP Conf. Proc. 862, 281 (2006)

    Article  ADS  Google Scholar 

  20. Kluge, H.-J., et al.: HITRAP: a facility at GSI for highly-charged ions. Adv. Quantum Chem. (Academic Press) 53, 83 (2008)

    Article  ADS  Google Scholar 

  21. Herfurth, F., et al.: The HITRAP project at GSI: trapping and cooling of highly-charged ions in a Penning trap. In: Proceedings of the 4th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2006), Parksville, Canada, 3–8 September, 2006, PART II/III (2006)

  22. Mohamed, T.: Successful production of non-neutral electron plasma of high density in the multi-ring trap. Plasma Dev. Oper. 16, 181 (2008)

    Article  Google Scholar 

  23. Schlachter, A.S.: Charge-changing-collisions. In: Proc. of the 10th Int. Cyclotron Conf., 563 (1984)

  24. Benvenuti, C., et al.: Vacuum properties of TiZrV non-evaporable getter films. Vacuum 60, 57 (2001)

    Article  Google Scholar 

  25. Fei, X., et al.: Cylindrical Penning traps with dynamical orthogonalized anharmonicity compensation for precission experiments. Nucl. Instrum. Methods A 425, 431 (1999)

    Article  ADS  Google Scholar 

  26. Maero, G.: Cooling of highly charged ions in a Penning trap for HITRAP. PhD thesis, University of Heidelberg, Germany (2008)

  27. Ringle, R., et al.: A “Lorentz” steerer for ion injection into a Penning trap. Int. J. Mass Spectrom. 263, 38 (2007)

    Google Scholar 

  28. Testera, G., et al.: The role of the patch effect electric fields in the Penning trap method of measuring the gravitational force on antiprotons. Hyperfine Interact. 109, 333 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, V.V., Delheij, P., Dilling, J. et al. Cooling of short-lived, radioactive, highly charged ions with the TITAN cooler Penning trap. Hyperfine Interact 199, 151–159 (2011). https://doi.org/10.1007/s10751-011-0309-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0309-5

Keywords

Navigation