Skip to main content

Advertisement

Log in

Two-body beta decay of stored few-electron ions

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The combination of the projectile fragment separator FRS and the cooler-storage ring ESR at the accelerator facility of GSI Darmstadt offers the unique opportunity to study beta decay of stored highly-charged ions. Basic nuclear properties such as masses and half-lives are measured by applying the mass- and time-resolved Schottky Mass Spectrometry (SMS). The relative mass-to-charge ratio is directly correlated to the relative revolution frequency. The SMS is sensitive to single stored ions and the decay of each stored ion can be precisely determine by steady monitoring of the corresponding revolution frequencies. On this basis the single particle decay-spectroscopy has been developed which allows for an unambiguous time-resolved and background-free identification of a certain decay branch. In this contribution we discuss experiments on the orbital electron capture (EC) of radioactive ions in the ESR. Fully ionized, hydrogen- and helium-like 140Pr and 142Pm ions have been selected for these studies. These nuclei decay to stable daughter nuclei via either the three-body β  + - or the two-body EC-decay by a single allowed Gamow–Teller (1 +  →0 + ) transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jung, M., et al.: Phys. Rev. Lett. 69, 2164 (1992)

    Article  ADS  Google Scholar 

  2. Bosch, F., et al.: Phys. Rev. Lett. 77, 5190 (1996)

    Article  ADS  Google Scholar 

  3. Ohtsubo, T., et al.: Phys. Rev. Lett. 95, 052501 (2005)

    Article  ADS  Google Scholar 

  4. Geissel, H., et al.: Eur. Phys. J., Special Topics 150, 109 (2007)

    Article  ADS  Google Scholar 

  5. Litvinov, Yu.A., et al.: Phys. Rev. Lett. 99, 262501 (2007)

    Article  ADS  Google Scholar 

  6. Litvinov, Yu.A., et al.: Phys. Lett. B664, 162 (2008)

    Google Scholar 

  7. Sümmerer, K., Blank, B.: Phys. Rev. C61, 034607 (2000)

    Google Scholar 

  8. Scheidenberger, C., et al.: Nucl. Instrum. Methods B142, 441 (1998)

    Article  Google Scholar 

  9. Geissel, H., et al.: Ann. Rev. Part. Nucl. Sci. 45, 163 (1995)

    Article  ADS  Google Scholar 

  10. Bethe, H.: Z. Phys. 76, 293 (1932)

    Article  ADS  MATH  Google Scholar 

  11. Scheidenberger, C., Geissel, H.: Nucl. Instrum. Methods B135, 25 (1998)

    Article  Google Scholar 

  12. Franzke, B., et al.: Nucl. Instrum. Methods B24/25, 18 (1987)

    ADS  Google Scholar 

  13. Steck, M., et al.: AIP Conf. Proc. 457, 87 (1999)

    ADS  Google Scholar 

  14. Franzke, B., et al.: Phys. Scr. T59, 176 (1995)

    Article  ADS  Google Scholar 

  15. Franzke, B., Geissel, H., Münzenberg, G.: Mass Spectrom. Rev. 27, 428 (2008)

    Article  Google Scholar 

  16. Nolden, F.: Nucl. Instrum. Methods A441, 219 (2000)

    ADS  Google Scholar 

  17. Steck, M., et al.: Nucl. Instrum. Methods A532, 357 (2004)

    ADS  Google Scholar 

  18. Winckler, N., et al.: Phys. Lett. B679, 36 (2009)

    ADS  Google Scholar 

  19. Patyk, Z., et al.: Phys. Rev. C77, 014306 (2008)

    ADS  Google Scholar 

  20. Ivanov, A.N., et al.: Phys. Rev. C78, 025503 (2008)

    ADS  Google Scholar 

  21. Borzov, I.N., Saperstein, E.E., Tolokonnikov, S.V.: Phys. Atmos. Nuclei 71, 469 (2008)

    Article  ADS  Google Scholar 

  22. Seelig, P., et al.: Phys. Rev. Lett. 81, 4824 (1998)

    Article  ADS  Google Scholar 

  23. Lambiase, G., et al.: arXiv:0811.2302 [nucl-th] (2008)

  24. Lipkin, H.: arXiv:0805.0435 [hep-ph]

  25. Ivanov, A.N., et al.: Phys. Rev. Lett. 103, 062502 (2009)

    Article  ADS  Google Scholar 

  26. Cohen, A.G., et al.: Phys. Lett. B678, 191 (2009)

    ADS  Google Scholar 

  27. Giunti, C.: Nucl. Phys. B188, 43 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to N. Winckler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winckler, N., Bosch, F., Litvinov, Y.A. et al. Two-body beta decay of stored few-electron ions. Hyperfine Interact 199, 103–114 (2011). https://doi.org/10.1007/s10751-011-0305-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0305-9

Keywords

Navigation