Skip to main content
Log in

Mössbauer study of 57Fe in GaAs and GaP following 57Mn+ implantation

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Ion implantation provides a precise method of incorporating dopant atoms in semiconductors, provided lattice damage due to the implantation process can be annealed and the dopant atoms located on regular lattice sites. We have undertaken 57Fe emission Mössbauer spectroscopy measurements on GaAs and GaP single crystals following implantation of radioactive 57Mn +  ions, to study the lattice sites of the implanted ions, the annealing of implantation induced damage and impurity–vacancy complexes formed. The Mössbauer spectra were analyzed with four spectral components: an asymmetric doublet (D1) attributed to Fe atoms in distorted environments due to implantation damage, two single lines, S1 assigned to Fe on substitutional Ga sites, and S2 to Fe on interstitial sites, and a low intensity symmetric doublet (D2) assigned to impurity–vacancy complexes. The variations in the extracted hyperfine parameters of D1 for both materials at high temperatures (T > 400 K) suggests changes in the immediate environment of the Fe impurity atoms and different bonding mechanism to the Mössbauer probe atom. The results show that the annealing of the radiation induced damage is more prominent in GaAs compared to GaP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosi, M., Pelosi, C.: Prog. Photovolt: Res. Appl. 15, 51–68 (2007)

    Article  Google Scholar 

  2. Queisser, H.J., Halle, E.E.: Science 281, 945–946 (1998)

    Article  Google Scholar 

  3. Holm, N.E., Nylandsted, A., Deutch, B.I., Weyer, G.: Inst. Phys. Conf. Ser. No. 46, 735 (1979)

    Google Scholar 

  4. Weyer, G., Damgaard, S., Petersen, J.W., Heinemeier, J.: Phys. Stat. Sol. (B) 98, K147 (1980)

    Article  ADS  Google Scholar 

  5. Weyer, G., Petersen, J.W., Damgaard, S.: Hyp. Int. 15/16, 495–498 (1983)

    Article  ADS  Google Scholar 

  6. Holm, N.E., Weyer, G.: J. Phys. Chem: Solid State Phys. 13, 1109–1120 (1980)

    Article  ADS  Google Scholar 

  7. Weyer, G., Damgaard, S., Petersen, J.W., Heinemeier, J.: J. Phys. Chem: Solid State Phys. 13, L181–L183 (1980)

    Article  ADS  Google Scholar 

  8. Weyer, G., Petersen, J.W., Damgaard, S., Nielsen, H.L., Heinemeier, J.: Phys. Rev. Lett. 44, 155–157 (1980)

    Article  ADS  Google Scholar 

  9. Weyer, G., Petersen, J.W., Damgaard, S.: Physica 116B, 470–473 (1983)

    Google Scholar 

  10. Nielsen, O.H., Larsen, F.K., Damgaard, S., Petersen, J.W., Weyer, G.: Z. Phys. B 52, 99–109 (1983)

    Article  ADS  Google Scholar 

  11. Weyer, G., Petersen, J.W., Damgaard, S.: Physica 117B & 118B, 523–525 (1983)

    Google Scholar 

  12. Weyer, G., and the ISOLDE Collaboration: Hyp. Int. 129, 371–390 (2000)

    Article  ADS  Google Scholar 

  13. Schroyen, D., Dezsi*, I., Langouche, G.: Hyp. Int. 29, 1255–1258 (1986)

    Article  ADS  Google Scholar 

  14. Fedoseyev, V.N., Bätzner, K., Catherall, R., Evens, A.H.M., Forkel-Wirth, D., Jonsson, O.C., Kugler, E., Lettry, J., Mishin, V.I., Ravn, H.L., Weyer, G., and the ISOLDE Collaboration: Nucl. Instrum. Methods B 126, 88 (1997)

    Article  Google Scholar 

  15. Gunnlaugsson, H.P., Bharuth-Ram, K., Dietrich, M., Fanciulli, M., Fynbo, H.O.U., Weyer, G.: Hyp. Int. 169, 1319–1323 (2006)

    Article  ADS  Google Scholar 

  16. Gunnlaugsson, H.P., Fanciulli, M., Dietrich, M., Baruth-Ram, K., Sielemann, R., Weyer, G., the ISOLDE collaboration: Nucl. Instrum. Methods B 168, 55–60 (2002)

    Article  ADS  Google Scholar 

  17. Weyer, G., Gunnlaugsson, H.P., Dietrich, M., Fanciulli, M., Baruth-Ram, K., Sielemann, R., and the ISOLDE collaboration: Nucl. Instrum. Methods B 206, 90–94 (2003)

    Article  ADS  Google Scholar 

  18. Weyer, G., Gunnlaugsson, H.P., Dietrich, M., Fynbo, H., Bharuth-Ram, K., and the ISOLDE Collaboration: Eur. Phys. J.–Appl. Phys. 27, 317–320 (2004)

    Article  ADS  Google Scholar 

  19. Jencic, I., Bench, M.W., Robertson, I.M., Kirk, M.A.: J. Appl. Phys. 78(2), 972–984 (1995)

    ADS  Google Scholar 

  20. Gupta, A.S., Moser, P., Corbel, C., Hautojärvi, P., Sen, P.: Cryst. Res. Technol. 23, 243–246 (1988)

    Article  Google Scholar 

  21. Gupta, A.S.: Bull. Mater. Sci. 13, 89–94 (1990)

    Article  Google Scholar 

  22. Dlubek, G., Ascheron, C., Krause, R., Erhard, H., Klimm, D.: Phys. Stat. Sol. (A) 106, 81–88 (1988)

    Article  ADS  Google Scholar 

  23. Polity, A., Abgarjan, T.h., Krause-Rehberg, R.: Appl. Phys. A60, 541–544 (1995)

    ADS  Google Scholar 

  24. Pons, D.: Physica B 116, 388–393 (1983)

    Article  Google Scholar 

  25. Itoh, Y., Murakami, H.: Appl. Phys. A58, 59–62 (1994)

    ADS  Google Scholar 

  26. Corbel, C., Pierre, F., Saarinen, K., Hautojärvi, P., Moser, P.: Phys. Rev B 45, 3386–3399 (1992)

    Article  ADS  Google Scholar 

  27. Reid, J.S.: Acta Cryst. A39, 1–13 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Masenda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masenda, H., Naidoo, D., Bharuth-Ram, K. et al. Mössbauer study of 57Fe in GaAs and GaP following 57Mn+ implantation. Hyperfine Interact 198, 15–22 (2010). https://doi.org/10.1007/s10751-010-0215-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-010-0215-2

Keywords

Navigation