Hyperfine Interactions

, Volume 196, Issue 1–3, pp 339–347 | Cite as

Thermal evolution of the electric field gradient at 181Ta in αHfNi

  • Božidar Cekić
  • A. Umićević
  • V. Ivanovski
  • J. Belošević-Čavor
  • V. Koteski
  • Rongwei Hu
  • C. Petrovic


The perturbed angular correlation method has been employed to study the temperature dependence of the 181Ta hyperfine interaction parameters in the polycrystalline intermetallic compound αHfNi. At ambient temperature the frequency of the electric quadrupole interaction was ωQ = 26.0(2) Mrad/s and the asymmetry parameter η = 0.22(1). The magnitude of the observed electric field gradient decreases with increasing temperature from 78 to 900 K. The calculations were done using the augmented plane wave plus local orbitals method as implemented in the WIEN2k code, using the generalized gradient approximation. In addition, a supercell calculation with Ta impurity located at the hafnium site was performed. The obtained result is in a good agreement with the experiment.


HfNi Electric field gradient PAC APW + lo 


71.70.Jp 76.80.+y 75.20.−g 71.15.Ap 71.20.Lp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mukai, D., Miyata, H., Aolo, K.: J. Alloys Comp. 293–295, 417–420 (1999)CrossRefGoogle Scholar
  2. 2.
    Stojić, D.L.J., Kumrić, S.V., Belošević-Čavor, J.N., Radaković, J.S., Cekić, B.D.J., Mentus, S.V.: Int. J. Hydrogen Energy (2009). doi:10.1016/j.ijhydene.2009.02.055 Google Scholar
  3. 3.
    Van Essen, R.M., Buschow, K.H.J.: J. Less-Common Met. 64, 277–284 (1979)CrossRefGoogle Scholar
  4. 4.
    Nemirovskaya, I.E., Alekseev, A.M., Lunin, V.V.: J. Alloys Compd. 177, 1–15 (1991)CrossRefGoogle Scholar
  5. 5.
    Nemirovskaya, I.E., Lunin, V.V.: J. Alloys Compd. 209, 93–97 (1994)CrossRefGoogle Scholar
  6. 6.
    Yaar, I., Cohen, D., Halevy, I., Kahane, S., Ettedgui, H., Aslanov, R., Berant, Z.: Hyperfine Interact. 159, 351–356 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Goldben, M.P., Sandrock, G.D.: US Patent No. 5673556, issued on October 7, 1997Google Scholar
  8. 8.
    Yang, S., Aubertin, F., Rehbein, P., Gonser, U.: Hyperfine Interact. 69, 537–540 (1991)CrossRefADSGoogle Scholar
  9. 9.
    Gerdau, E., Winkler, H., Gebert, W., Giese, B., Braunsfurth, J.: Hyperfine Interact. 1, 459–467 (1976)CrossRefADSGoogle Scholar
  10. 10.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN 2k An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Vienna, Austria) (2001)Google Scholar
  11. 11.
    Williams, A.R., Kubler, J., Gelatt, C.D. Jr.: Phys. Rev., B 19, 6094 (1979)CrossRefADSGoogle Scholar
  12. 12.
    Koteski, V., Ivanovæ, N., Cekić, B., Milošević, Z.: J. Phys. Soc. Jpn. 73(8), 2158–2163 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Hunter, B.: “RIETICA—A Visual RIETVELD Program” International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 Summer (1998). http://www.rietica.org
  14. 14.
    Butz, T., Lerf, A.: Phys. Lett., A 97, 217–218 (1983)CrossRefADSGoogle Scholar
  15. 15.
    Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefADSGoogle Scholar
  16. 16.
    Blochl, Jepsen, O., Andersen, O.K.: Phys. Rev., B 49, 16223–16233 (1994)CrossRefADSGoogle Scholar
  17. 17.
    Blaha, P., Schwarz, K., Herzig, P.: Phys. Rev. Lett. 54, 1192–1195 (1985)CrossRefADSGoogle Scholar
  18. 18.
    Wodiecki, P., Wodniecka, B., Kulińska, A., Uhrmacher, M., Lieb, K.P.: J. Alloys Compd. 351, 1–6 (2003)CrossRefGoogle Scholar
  19. 19.
    Wodiecki, P., Wodniecka, B., Kulińska, A., Uhrmacher, M., Lieb, K.P.: J. Alloys Compd. 399, 52–56 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Božidar Cekić
    • 1
  • A. Umićević
    • 1
  • V. Ivanovski
    • 1
  • J. Belošević-Čavor
    • 1
  • V. Koteski
    • 1
  • Rongwei Hu
    • 2
    • 3
  • C. Petrovic
    • 2
  1. 1.Laboratory of Nuclear and Plasma PhysicsInstitute of Nuclear Sciences VinčaBelgradeSerbia
  2. 2.Condensed Matter Physics and Materials Science DepartmentBrookhaven National LaboratoryUptonUSA
  3. 3.Department of PhysicsBrown UniversityProvidenceUSA

Personalised recommendations