Skip to main content
Log in

Exploring the nuclear potential of antihyperons with antiprotons at \({\overline{\rm\bf P}}{\rm\bf ANDA}\)

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A schematic Monte Carlo simulation is used to examine the potential of the \({\overline{\rm P}} {\rm ANDA}\) experiment to extract information on the interaction of antihyperons in nuclei by exclusive hyperon-antihyperon pair production close to threshold in antiproton nucleus interactions. Due to energy and momentum conservation event-by-event transverse momentum correlations of the produced hyperon and antihyperons contain information on the difference between their potentials. It is demonstrated that for \({{\Lambda}{\overline{\Lambda}}}\) and \({{{\Xi}}{{\overline{\Xi}}}}\) pairs produced at antiproton momenta of 1.66 GeV/c and 2.9 GeV/c, respectively, the asymmetry is sufficiently sensitive even if the density as well as the momentum dependencies of the potentials are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, T.D., Yang, C.N.: Nuovo Cim. 3, 749 (1956)

    Article  MathSciNet  Google Scholar 

  2. Dürr, H.-P., Teller, E.: Phys. Rev. 101, 494 (1956)

    Article  ADS  Google Scholar 

  3. Dürr, H.-P.: Phys. Rev. 103, 469 (1956)

    Article  MATH  ADS  Google Scholar 

  4. Dürr, H.-P.: Phys. Rev. 109, 1347 (1958)

    Article  ADS  Google Scholar 

  5. Goldhaber, G., Sandweiss, J.: Phys. Rev. 110, 1476 (1958)

    Article  ADS  Google Scholar 

  6. Barnes, P.D., et al.: Phys. Rev. Lett. 29, 1132 (1972)

    Article  ADS  Google Scholar 

  7. Backenstoss, G., et al.: Phys. Lett., B 41, 552 (1972)

    Article  ADS  Google Scholar 

  8. Roberson, P., et al.: Phys. Rev., C 16, 1945 (1977)

    Article  ADS  Google Scholar 

  9. Poth, H., et al.: Nucl. Phys., A 294, 435 (1978)

    Article  ADS  Google Scholar 

  10. Friedman, E., Gal, A.: Phys. Rep. 452, 89 (2007)

    Article  ADS  Google Scholar 

  11. Auerbach, E.H., Dover, C.B., Kahana, S.H.: Phys. Rev. Lett. 46, 702 (1981)

    Article  ADS  Google Scholar 

  12. Batty, C.J.: Nucl. Phys., A 372, 433 (1981)

    Article  ADS  Google Scholar 

  13. Friedman, E., Gal, A., Mares, J.: Nucl. Phys., A 761, 283 (2005)

    Article  ADS  Google Scholar 

  14. Teis, S., et al.: Phys. Rev., C 50, 388 (1994)

    Article  ADS  Google Scholar 

  15. Spieles, C., et al.: Phys. Rev., C 53, 2011 (1996)

    Article  ADS  Google Scholar 

  16. Sibirtsev, A., et al.: Nucl. Phys., A 632, 131 (1998)

    Article  ADS  Google Scholar 

  17. Dover, C.B., Richard, J.M.: Phys. Rev., C 21, 1466 (1980)

    Article  ADS  Google Scholar 

  18. Faessler, A. Lübeck, G., Shimizu, K.: Phys. Rev., D 26, 3280 (1982)

    Article  ADS  Google Scholar 

  19. Mishustin, I.N., et al.: Phys. Rev., C 71, 035201 (2005)

    Article  ADS  Google Scholar 

  20. Larionov, A.B., et al.: Phys. Rev., C 78, 014604 (2008)

    Article  ADS  Google Scholar 

  21. Pochodzalla, J.: Phys. Lett., B 669, 306 (2008)

    Article  ADS  Google Scholar 

  22. Barnes, P.D., et al.: Nucl. Phys., A 526, 575 (1991)

    Article  ADS  Google Scholar 

  23. Pomp, S.: Hyperon polarisation in the reaction \(\overline{p}^{12}C \rightarrow {{\ensuremath{\Lambda}}}{{\ensuremath{\overline{\Lambda}}}}X\). Ph.D. thesis, Uppsala University (1999)

  24. Hahn, B., Ravenhall, D.G., Hofstadter, R.: Phys. Rev. 101, 1131 (1956)

    Article  ADS  Google Scholar 

  25. Sibirtsev, A., Tsushima, K., Thomas, A.W.: Eur. Phys. J., A 6, 351 (1999)

    Article  ADS  Google Scholar 

  26. Lenske, H., Kienle, P.: Phys. Lett., B 647, 82 (2007)

    Article  ADS  Google Scholar 

  27. Moniz, E.J., et al.: Phys. Rev. Lett. 26, 445 (1971)

    Article  ADS  Google Scholar 

  28. Weber, H., Bratkovskaya, E.L., Stöcker, H.: Phys. Rev., C 66, 054903 (2002)

    Article  ADS  Google Scholar 

  29. Yamazaki, T., Akaishi, Y.: Phys. Lett., B 453, 1 (1999)

    Article  ADS  Google Scholar 

  30. Gale, C., Bertsch, G., Das Gupta, S.: Phys. Rev., C 35, 1666 (1987)

    Article  ADS  Google Scholar 

  31. Aichelin, J., et al.: Phys. Rev. Lett. 58, 1926 (1987)

    Article  ADS  Google Scholar 

  32. Lee, C.-H., Kuo, T.T.S., Li, G.Q., Brown, G.E.: Phys. Lett., B 412, 235 (1997)

    Article  ADS  Google Scholar 

  33. Tsushima, K., Khanna, F.C.: Phys. Lett., B 552, 138 (2003)

    Article  ADS  Google Scholar 

  34. Saito, K., Tsushima, K., Thomas, A.W.: Prog. Part. Nucl. Phys. 58, 1 (2007)

    Article  ADS  Google Scholar 

  35. \({\overline{\rm P}}\)ANDA Collaboration: Technical Progress Report (GSI Darmstadt), pp. 1–383 (2005)

  36. Grape, S.: Licenciate thesis, Uppsala University (2008). arXiv:0805.0950v1

  37. Kaidalov, A.B., Volkovitsky, P.E.: Z. Phys., C 63, 517 (1994)

    Article  ADS  Google Scholar 

  38. Cassing, W., Bratkovskaya, E.L., Hansen, O.: Nucl. Phys., A 707, 224 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Pochodzalla.

Additional information

Supported from the Bundesministerium für Bildung und Forschung (bmb+f) under contract number 06MZ225I and at Mainz bei the Sonderforschungsbereich 443 of the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pochodzalla, J. Exploring the nuclear potential of antihyperons with antiprotons at \({\overline{\rm\bf P}}{\rm\bf ANDA}\) . Hyperfine Interact 194, 255–261 (2009). https://doi.org/10.1007/s10751-009-0083-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-009-0083-9

Keywords

Navigation