Advertisement

Hyperfine Interactions

, Volume 187, Issue 1–3, pp 117–124 | Cite as

Study of SHI-induced ion beam mixing in Y3+: YIG employing X-ray diffraction and Mössbauer spectroscopy

  • P. U. Sharma
  • M. K. Roy
  • Ravi Kumar
  • H. C. Verma
  • H. H. Joshi
  • K. B. Modi
Article

Abstract

The consequences of swift heavy ion (SHI) irradiation (Li3 + , 50 MeV, fluence = 5 × 1013 ions/cm2) on the structural and microscopic magnetic properties of Y3 + -substituted yttrium iron garnet (Y3 + x Fe5 − x O12, x = 0.0, 0.2 and 0.4) have been studied at 300 K. It is found that an additional YFeO3-phase observed along with bcc garnet phase, is completely removed for x = 0.2 composition while its percentage formation considerably reduces for x = 0.4 composition after irradiation. Similar effect has been observed for specimens sintered at 1,500°C. The SHI-induced ion beam mixing has been revealed through X-ray diffraction and Mössbauer spectroscopy.

Keywords

Garnet Swift heavy ion irradiation Ion beam mixing Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, M.W.: Defects and Radiation Damage in Metals. Cambridge University Press, Cambridge (1969)Google Scholar
  2. 2.
    Studer, F., Houpert, C., Groult, D., Toulemonde, M.: Latent tracks in magnetic insulators. Radiat. Eff. Defects Solids 110, 55–59 (1989)CrossRefGoogle Scholar
  3. 3.
    Toulemonde, M., Fuchs, G., Nguyen, N., Studer, F., Groult, D.: Damage processes and magnetic field orientation in ferrimagnetic oxides Y3Fe5O12 and BaFe12O19 irradiated by high energy heavy ions: a Mössbauer study. Phys. Rev. B 35(13), 6560–6569 (1987) (and references therein)CrossRefADSGoogle Scholar
  4. 4.
    Houpert, C., Hervieu, M., Groult, D., Studer, F., Toulmonde, M.: HREM investigation of GeV heavy ion latent tracks in ferrites. NIM B 32, 393–396 (1988)CrossRefADSGoogle Scholar
  5. 5.
    Grosseau, P., Bachiorrini, A., Guilhot, B.: Preparation of polycrystalline yttrium iron garnet ceramics. Powder Technol. 93, 247–251 (1997)CrossRefGoogle Scholar
  6. 6.
    Donnerberg, H., Catlow, C.R.A.: Atomistic computer simulations of yttrium iron garnet (YIG) as an approach to materials defect chemistry: I. Intrinsic defects. J. Phys. Condens. Matter. 5, 2947–2960 (1993)CrossRefADSGoogle Scholar
  7. 7.
    Modi, K.B., Shah, H.J., Trivedi, U.N., Vara, R.P., Chhantbar, M.C., Joshi, H.H.: Effect of Fe3 + -substitution on structural and macro-magnetic properties of yttrium iron garnet. Indian J. Eng. Mater. Sci. 10, 502–506 (2003)Google Scholar
  8. 8.
    Sharma, P.U., Modi, K.B., Lakhani, V.K., Zankat, K.B., Joshi, H.H.: Mössbauer spectroscopic studies of Fe3 + -substituted YIG. Ceram. Int. 33(8), 1543–1546 (2007)CrossRefGoogle Scholar
  9. 9.
    Chhantbar, M.C., Modi, K.B., Baldha, G.J., Joshi, H.H., Upadhyay, R.V., Kumar, R.: Influence of 50 Mev Li3 + ion irradiated on structural and magnetic properties of Ti4 + -substituted Li0.5Al0.1Fe2.4O4. NIM B 244, 124–127 (2006)CrossRefADSGoogle Scholar
  10. 10.
    Shannon, R.D., Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr. B25, 925–946 (1969)Google Scholar
  11. 11.
    Lee, S.H., Chae, K.P., Hong, S.W., Lee, Y.B.: Mössbauer study of Y3 − xFe5 + xO12 (x = 0.0, 0.18, 0.33). Solid State Commun. 83(2), 97–100 (1992)CrossRefADSGoogle Scholar
  12. 12.
    Eibschutz, M., Shitrikman, S., Treves, D.: Mössbauer studies of Fe57 in orthoferrites. Phys. Rev. 156(2), 562–577 (1967)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. U. Sharma
    • 1
  • M. K. Roy
    • 2
  • Ravi Kumar
    • 3
  • H. C. Verma
    • 2
  • H. H. Joshi
    • 1
  • K. B. Modi
    • 1
  1. 1.Department of PhysicsSaurashtra UniversityRajkotIndia
  2. 2.Department of PhysicsIIT-KanpurKanpurIndia
  3. 3.Inter University Accelerator CentreAruna Asaf Ali MargIndia

Personalised recommendations