Hyperfine Interactions

, Volume 184, Issue 1–3, pp 147–153 | Cite as

Mixing characterization of mechanically milled Fe75Si15M10 powders using Mössbauer spectroscopy

  • Brajesh Pandey
  • M. P. C. Kalita
  • A. Perumal
  • A. Srinivasan
  • H. C. Verma
Article

Abstract

Mixing characteristics of Si and Al or Cr in Fe has been studied in ball milled Fe75Si15M10 (with M = Al, Cr) alloys in detail. Mössbauer spectroscopic study shows that even up to 80 h of milling a large number of iron atoms remain uninteracted and give 33.0 T sextet. The portion which mixes up gives a magnetic component with 31.5 T of B hf and paramagnetic components showing up in doublets. It is proposed that Fe diffuses in the matrices of the other elements and vice versa. This is in contrast to our earlier studies on ball milled Fe–Cr alloy where Fe shows no sign of diffusion in Cr, but Cr diffuses in Fe freely.

Keywords

Mössbauer spectroscopy Ball milling Nanophase iron alloy Nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suryanarayana, C.: Mechanical Alloying and Milling. Dekker, New York (2004)Google Scholar
  2. 2.
    Lai, M.O., Lu, L.: Mechanical Alloying. Kluwer Academic, Boston, MA (1998)Google Scholar
  3. 3.
    Murty, B.S., Ranganathan, S.: Novel materials synthesis by mechanical alloying. Internat. Mater. Rev. 43, 101–141 (1998)Google Scholar
  4. 4.
    Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)CrossRefGoogle Scholar
  5. 5.
    Murugesan, M., Kuwano, H.: Magnetic properties of nano-crystalline Fe–Cr alloys prepared by mechanical alloying. IEEE Trans. Magn. 35, 3499–3501 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Lemoine, C., Fnidiki, A., Lemarchand, D., Tellet, J.: Grain core study of Fe1 − xCrx nanograins obtained by mechanical alloying. J. Phys. Condens. Matter 11, 8341–8350 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Loffler, J.F., Braun, H.B., Wagner, W.: Magnetic correlations in nanostructured ferromagnets. Phys. Rev. Lett. 85, 1990–1993 (2000)CrossRefADSGoogle Scholar
  8. 8.
    Shen, T.D., Schwarz, R.B., Thompson, J.D.: Soft magnetism in mechanically alloyed nanocrystalline materials. Phys. Rev. B 72, 014431–014438 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Bahrami, A., Hosseini, H.R.M., Abachi, P., Miraghaei, S.: Structural and soft magnetic properties of nanocrystalline Fe85Si10Ni5 powders prepared by mechanical alloying. Mater. Lett. 60, 1068–1070 (2006)CrossRefGoogle Scholar
  10. 10.
    Fnidiki, A., Lemonie, C., Teillet, J., Noguès, M.: Mechanically alloyed Fe100 − xCrx powder mixtures: magnetic measurements. Physica B 363, 271–281 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)CrossRefADSGoogle Scholar
  12. 12.
    Perumal, A., Srinivas, V., Rao, V.V., Dunlap, R.A.: Quenched disorder and the critical behavior of a partially frustrated system. Phys. Rev. Lett. 91, 137202–137205 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Kalita, M.P.C., Perumal, A., Srinivasan, A.: Structural analysis of mechanically alloyed nanocrystalline Fe75Si15Al10 powders. Mater. Lett. 61, 824–826 (2007)CrossRefGoogle Scholar
  14. 14.
    Kalita, M.P.C., Perumal, A., Srinivasan, A., Pandey, B., Verma, H.C.: Properties of nanocrystalline Fe75Si15M10 (M—Cr and Al) powders prepared by mechanical alloying. J. Nanosci. Nanotechnol. 8, 4314–4317 (2008)CrossRefGoogle Scholar
  15. 15.
    Pandey, B., Rao, M.A., Verma, H.C., Bhargava, S.: Structural and compositional changes during mechanical milling of the Fe–Cr system. J. Phys. Condens. Matter 17, 7981–7993 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Pandey, B., Rao, M.A., Verma, H.C., Bhargava, S.: Mossbauer spectroscopic studies of Fe-20 wt.% Cr ball milled alloy. Hyperfine Interact. 169, 1259–1266 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Ungar, T., Tichy, G.: The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status Solidi A 171, 425–434 (1999)CrossRefADSGoogle Scholar
  18. 18.
    Ungar, T., Dragomir, A., Revesz, I., Borbely, A.: The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Cryst. 32, 992–1002 (1999)CrossRefGoogle Scholar
  19. 19.
    Revesz, A., Ungar, T., Borbely, A., Lendvai, J.: Dislocations and grain size in ball-milled iron powder. Nanostruct. Mater. 7, 779–788 (1996)CrossRefGoogle Scholar
  20. 20.
    Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  21. 21.
    Pandey, B., Suwas, S., Verma, H.C.: Phase transformations in Fe72 − xAl28Tix (x = 0,2,6,9) alloys induced by severe plastic deformation. J. Magn. Magn. Mater. 246, 151–161 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Pandey, B., Nambissan, P.M.G., Suwas, S., Verma, H.C.: Mössbauer and positron annihilation studies in plastically deformed Fe72 − xAl28Tix (x = 0, 2, 9) alloys. J. Magn. Magn. Mater. 263, 307–314 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Brajesh Pandey
    • 1
  • M. P. C. Kalita
    • 2
  • A. Perumal
    • 2
  • A. Srinivasan
    • 2
  • H. C. Verma
    • 1
  1. 1.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations