Skip to main content
Log in

Mössbauer and magnetization studies of iron oxide nanocrystals

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Monodisperse iron oxide nanocrystals have been produced following non-hydrolytic, thermal decomposition routes. Spherically shaped particles with diameter of 4 and 12 nm and cubic shaped particles with an edge length of 9 nm have been studied. The particles have been shown to consist of mainly maghemite. A reduction of the saturation magnetic hyperfine field is observed for the 4 nm particles as compared to the corresponding bulk value. The anisotropy energy determined from the temperature variation of the magnetic hyperfine field was strongly enhanced for the 4 nm particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, S., Murray, C.B.: Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4325 (1999)

    Article  ADS  Google Scholar 

  2. Hergt, R., et al.: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998)

    Article  ADS  Google Scholar 

  3. Tucek, J., Zboril, R., Petridis, D.: Maghemite nanoparticles by view of Mössbauer spectroscopy. J. Nanosci. Nanotechnol. 6, 926–947 (2006)

    Article  Google Scholar 

  4. Ahniyaz, A., et al.: Preparation of iron oxide nanocrystals by surfactant-free or oleic acid-assisted thermal decomposition of a Fe(III) alkoxide. J. Magn. Magn. Mater. 320, 781 (2008)

    Google Scholar 

  5. Vandenberghe, R.E., de Grave, E.: Mössbauer effect studies of oxidic spinels. In: Long, G.J., Grandjean, F. (eds.) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 3, pp. 59–182. Plenum Press, New York (1989)

    Google Scholar 

  6. Tronc, E.: Nanoparticles. Il Nuovo Cim. 18D, 163 (1996)

    ADS  Google Scholar 

  7. Annersten, H., Hafner, S.S.: Vacancy distribution in synthetic spinels of the series Fe3O4γ-Fe2O3. Z. Kristallogr. 137, 321 (1973)

    Google Scholar 

  8. Bowen, L.H., de Grave, E., Bryan, A.M.: Mössbauer studies in an external field of well-crystallized Al-maghemites made from hematite. Hyperfine Interact. 94, 1977–1982 (1994)

    Article  ADS  Google Scholar 

  9. Mørup, S.: Magnetic hyperfine splitting in Mössbauer spectra of microcrystals. J. Magn. Magn. Mater 37, 39–50 (1983)

    Article  ADS  Google Scholar 

  10. Prené, P., Tronc, E., Jolivet, J.P., Dormann, J.L.: In: Ortalli, I. (ed.) Mössbauer Spectra of γ-Fe2O3 Nanoparticles. Italian Physical Society, Conference Proceedings, vol. 50, pp. 485. Bologna (1996)

  11. Johansson, C., Hansson, M., Pedersen, M.S., Mørup, S.: Magnetic properties of magnetic liquids with iron-oxide particles—the influence of anisotropy and interactions. J. Magn. Magn. Mater. 173, 5–14 (1997)

    Article  ADS  Google Scholar 

  12. Hansen, M.F., Mørup, S.: Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 203, 214–216 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Häggström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häggström, L., Kamali, S., Ericsson, T. et al. Mössbauer and magnetization studies of iron oxide nanocrystals. Hyperfine Interact 183, 49–53 (2008). https://doi.org/10.1007/s10751-008-9750-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-008-9750-5

Keywords

Navigation