Skip to main content
Log in

g-Factors of magnetic–rotational states in 85Zr

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The g-factors of the magnetic–rotational intra-band states in 85Zr have been measured by the TMF-IMPAD method for the first time. The configuration \(\pi \left(g_{9/2}\right)_8^2 \otimes \nu \left( f_{7/2}\right)\) is established for the band. The measured g-factors are in good agreement with those calculated by the semi-classical model. The decrease of both g-factors and shears angles along the band shows that the total angular momentum is generated by the sheras effect of a step-by-step alignment of the valence protons and neutrons. The rapid neutron alignment leads to a decrease of g-factors along the band. The shears angle of the band-head is great than 90°, which implies that the spin-dependent interaction as well as the residul interaction might be involved in the shears mechanism in 85Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohr, A.: Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26(14), 1–40 (1952)

    Google Scholar 

  2. Datta, P., Chattopadhyay, S., Banerjee, P., et al.: Phys. Rev. C 69, 044317 (2004)

    Article  ADS  Google Scholar 

  3. Chmel, S., et al.: Phys. Rev. Lett. 79, 2002 (1997)

    Article  ADS  Google Scholar 

  4. Hübel, H.: Prog. Part. Nucl. Phys. 54, 1–69 (2005)

    Article  ADS  Google Scholar 

  5. Baldsiefen, G., et al.: Nucl. Phys. A574, 521 (1994)

    ADS  Google Scholar 

  6. Frauendorf, S.: Rev. Mod. Phys. 73, 463 (2001)

    Article  ADS  Google Scholar 

  7. Macchiavelli, A.O., Clark, R.M., Fallon, P., et al.: Phys. Rev. C57, R1073 (1998)

    ADS  Google Scholar 

  8. Clark, R.M., Macchiavelli, A.O.: Annu. Rev. Nucl. Part. Sci. 50, 1 (2000)

    Article  ADS  Google Scholar 

  9. Chmel, S., et al.: Phys. Rev. Lett. 79, 2002 (1997)

    Article  ADS  Google Scholar 

  10. Tandel, S.K., Kore, S.R., Patel, S.B., et al.: Phys. Rev. C65, 054307–1 (2002)

    ADS  Google Scholar 

  11. Zhiming, W., et al.: High Energy Phys. Nucl. Phys. 27, 24 (2003)

    Google Scholar 

  12. Shengyun, Z., et al.: Chinese J. Nucl Phys 18, 171 (1996)

    Google Scholar 

  13. Shengyun, Z., et al.: Chin. Phys. Lett. 17, 560 (2000)

    Article  Google Scholar 

  14. Omata, K., Fujita, Y., Yoshikawa, N., Sekiguchi, M., Shida, Y.: Proc. IEEE 7th Real Time ’91 on Computer Applications in Nuclear, Particle and Plasma Physics, Jülich, p. 243 (1991)

  15. Benczer-Koller, N., Hass, M., Sak, J.: Ann. Rec. Nucl. Part. Sci. 30, 53 (1980)

    Article  ADS  Google Scholar 

  16. Shu, N.K.B., Melnik, D., Brennan, J.M., et al.: Phys. Rev. C 21, 1828 (1980)

    Article  ADS  Google Scholar 

  17. Ribas, R.V.: Nucl. Instr. Methods A328, 553–558 (1993)

    ADS  Google Scholar 

  18. Speidl, K.-H., Kenn, O., Nowacki, F.: Prog. Part. Nucl. Phys. 49, 91 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, D., Zheng, Y., Zhou, D. et al. g-Factors of magnetic–rotational states in 85Zr. Hyperfine Interact 180, 49–54 (2007). https://doi.org/10.1007/s10751-008-9684-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-008-9684-y

Keywords

Navigation