Skip to main content
Log in

Mössbauer spectroscopy methodology at the cutting-edge of high-pressure research

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

This paper provides a concise, introductory review intended mainly for Mössbauer spectroscopy (MS) scientists not familiar with the most modern aspects of High Pressure (HP) methodology. Following a short introduction to the 1st generation HP-MS based on Drickamer’s pressure cells, we describe the principles of the 2nd generation of HP-MS based on the Diamond Anvil Cell (DAC) including in-situ pressure measurements, the use of the high-specific activity 57Co(Rh) point sources, and examples of miniature DAC’s. Finally, we present recent studies carried out with 57Fe HP-MS combined with other HP techniques such as resistivity, and synchrotron-based x-ray diffraction, describing unique cases of the breakdown of magnetism and the Mott transition in hematite (Fe2O3), pressure-induced spin crossover in Wüstite (FeO), pressure induced Fe2+ → Fe3+ in Fe(OH)2, and (P,T) induced inverse↔ normal spinel transition in magnetite (Fe3O4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jayaraman, A.: Rev. Mod. Phys. 55, 65 (1983)

    Article  ADS  Google Scholar 

  2. Mössbauer, R.L.: Z. Phys. 151, 124 (1958)

    Article  ADS  Google Scholar 

  3. Mössbauer, R.L.: Naturwissenshaften 45, 538 (1958)

    Article  ADS  Google Scholar 

  4. Hanks, R.V.: Phys. Rev. 124, 1319 (1961)

    Article  ADS  Google Scholar 

  5. Pound, R.V., Benedek, G.B., Drever, R.: Phys. Rev. Lett. 7, 405 (1961)

    Article  ADS  Google Scholar 

  6. Drickamer, H.G.: In: Seitz, F., Turnbull, D. (eds.) Solid State Physics, vol. 17, p. 1. Academic, New York (1965)

    Google Scholar 

  7. Drickamer, H.G.: Chem. Br. 9, 353 (1973)

    Google Scholar 

  8. Drickamer, H.G., Frank, C.W.: Ann. Rev. Phys. Chem. 23, 39 (1972)

    Article  Google Scholar 

  9. Drickamer, H.G., Vaughan, R.W., Lewis, G.K. Jr.: Comments Solid State Phys. 1, 163 (1968)

    Google Scholar 

  10. Frauenfelder, H., Ingalls, R.: In: Applications of Mössbauer Effect in Chemistry and Solid State Physics. Technical Report Series, no. 50, p. 37, International Atomic Energy Agency, Vienna (1966)

  11. Holzapfel, W.B.: CRC Critical Reviews in Solid State Sciences, p. 89, (1975)

  12. Piermarini, G.J., Block, S.: Rev. Sci. Instrum. 46, 973 (1975)

    Article  ADS  Google Scholar 

  13. Mao, H.K., Bell, P.M.: In: Carnegie Institution of Washington Year Book 77, 824 (1979)

  14. Merrill, L., Bassett, W.A.: Rev. Sci. Instrum. 45, 290 (1974)

    Article  Google Scholar 

  15. Machavariani, G.Yu., Pasternak, M.P., Hearne, G.R., Rozenberg, G.Kh.: Rev. Sci. Instrum. 69, 1423 (1998)

    Article  ADS  Google Scholar 

  16. D’Anvils Ltd. http://www.danvils.com (A company specially devoted to anvils, DACs and accessories for Mössbauer spectroscopy)

  17. Dadashev, A., Pasternak, M.P., Rozenberg, G.Kh., Taylor, R.D.: Rev. Sci. Instrum. 72, 2633 (2001)

    Article  ADS  Google Scholar 

  18. Van Valkenburg, A.: Conference Internationale Sur-les-Hautes Pressions, LeCreusot, Saone-et-Loire, France (1965)

    Google Scholar 

  19. Forman, R.A., Piermarini, G.J., Barnett, J.D., Block, S.: Science 176, 284 (1972)

    Article  ADS  Google Scholar 

  20. Mao, H.K., Bell, P.M.: Science 200, 1145 (1978)

    Article  ADS  Google Scholar 

  21. Herber, R.H., Spijkerman, J.: J. Chem. Phys. 42, 4312 (1965)

    Article  ADS  Google Scholar 

  22. Huggins, F.E., Mao, H.J., Virgo, D.: Carnegie Institution of Washington Year Book 74, 405 (1975)

    Google Scholar 

  23. Cort, G., Taylor, R.D., Willis, J.O.: J. Appl. Phys. 53, 2064 (1982)

    Article  ADS  Google Scholar 

  24. Farrell, J.N.: PhD thesis, University of North Carolina (1984)

  25. Chow, L., Dean, P.A., Farrell, J.N., Magill, P.A., Roberts, L.D.: Phys. Rev. B 33, 3039 (1986)

    Article  ADS  Google Scholar 

  26. Pasternak, M., Farrell, J.N., Taylor, R.D.: Hyperfine Interact. 28, 837 (1985)

    Article  ADS  Google Scholar 

  27. Nasu, S., Kurimoto, K., Nagatomo, S., Endo, S., Fujita, F.E.: Hyperfine Interact. 29, 1583 (1985)

    Article  ADS  Google Scholar 

  28. Taylor, R.D., Farrell, J.N.: J. Appl. Phys. 61, 3669 (1987)

    Article  ADS  Google Scholar 

  29. Pasternak, M.P., Rozenberg, G.Kh., Machavariani, G.Yu., Naaman, O., Taylor, R.D., Jeanloz, R.: Phys. Rev. Lett. 82, 4663 (1999)

    Article  ADS  Google Scholar 

  30. van der Woude, F.: Phys. Status Solidi 17, 417 (1966)

    Google Scholar 

  31. McQueen, R.G., Marsh, S.P.: In: Clark, S.P. (ed.) Handbook in Physical Constants, p. 153. Memoir 97 of the Geological Society of America, Inc., Revised Edition (1966)

  32. Reid, A.F., Ringwood, A.E.: J. Geophys. Res. 74, 3238 (1969)

    Article  ADS  Google Scholar 

  33. Yagi, T., Akimoto, S.: In: Akimoto, S., Manghnani, M.H. (ed.) High Pressure Research in Geophysics, p. 81. Center Acad. Publ. Japan, Tokyo (1982)

    Google Scholar 

  34. Suzuki, T., Yagi, T., Akimoto, A., Ito, A., Morimoto, S., Syono, S.: In: Minomura, S. (ed.) Solid State Physics Under Pressure, p. 149. Terra Scientific (1985)

  35. Shannon, R.D., Prewitt, C.T.: J. Solid State Chem. 2, 134 (1970)

    Article  ADS  Google Scholar 

  36. Staun Olsen, J., Cousins, C.S.G., Gerward, L., Jhans, H., Sheldon, B.J.: Phys. Scr. 43, 327 (1991). (These authors were not aware, at this time, of the results of Piermarini and Block, 1975, private communication)

    Article  ADS  Google Scholar 

  37. X-ray diffraction studies were carried out at the High-Pressure ID30 beam-line at the European Synchrotron Research Facility, Grenoble

  38. Machavariani, G.Yu., Pasternak, M.P., Hearne, G.R., Rozenberg, G.Kh.: Rev. Sci. Instrum. 69, 1423 (1998)

    Article  ADS  Google Scholar 

  39. The hematite sample for MS studies was enriched to 15% 57Fe

  40. Hearne, G.R., Pasternak, M.P., Taylor, R.D.: Rev. Sci. Instrum. 65, 3787 (1994) (The particular 57Fe MS setup used for high pressure studies with DAC’s that used custom-made 0.5 mm × 0.5 mm 57Co(Rh) point sources is described.)

  41. The ground state 2 T 2g of the low-spin 5d-electrons configuration in Fe3+ is \( {\left( {t^{*}_{{2{\text{g}}}} \uparrow } \right)}^{3} {\left( {t^{*}_{{2{\text{g}}}} \downarrow } \right)}^{2} \), with magnetic moment approximately 1/5 of that of the high-spin 6 A 1g ground state.

  42. Note that following the first compression cycle (filled circle curve), R(P) upon decompression reaches a value that is lower at ∼5 GPa. Successive compression and decompression cycles are reproducible. This phenomenon can be explained as due to compacting of the sample during the first compression cycle.

  43. Pasternak, M.P., Taylor, R.D., Jeanloz, R., Li, X., Nguyen, J.H., McCammon, C.A.: Phys. Rev. Lett. 79, 5046 (1997)

    Article  ADS  Google Scholar 

  44. Hubbard, J.: Proc. R. Soc. A277, 237 (1964)

    ADS  Google Scholar 

  45. Pasternak, M.P., Taylor, R.D., Chen, A., Meade, C., Falicov, L.M., Giesekus, A., Jeanloz, R., Yu, P.Y.: Phys. Rev. Lett. 65, 790 (1990)

    Article  ADS  Google Scholar 

  46. Pasternak, M.P., Taylor, R.D., Jeanloz R.: In: Hochheimer, H.D., Etters, R.D. (ed.) Frontiers of High Pressure Research, p. 227. Plenum, New York (1992)

    Google Scholar 

  47. Hearne, G.R., Pasternak, M.P., Taylor, R.D.: Hyperfine Interact. 90, 447 (1994)

    Article  ADS  Google Scholar 

  48. Bargeron, C.B., Avinor, M., Drickamer, H.G.: Inorg. Chem. 7, 1338 (1971). (By substituting 2% 57Fe in MnS2 (TN = 48 K), claimed to observe a HS → LS transition in Fe impurities starting at ∼7 GPa and reaching a complete conversion to the LS state at 12 GPa. MS studies were done at 300 K. The signature for this transition was the different QS and IS claimed to be associated with LS Fe2+.)

  49. McCammon, C.A.: J. Magn. Magn. Mater. 104, 1937 (1992)

    Article  ADS  Google Scholar 

  50. Pasternak, M.P., Milner, A.P., Rozenberg, G.Kh., Taylor2, R.D., Jeanloz, R.: Phys. Rev. Lett. 92, 085506 (2004)

    Article  ADS  Google Scholar 

  51. Kruger, M.B. Williams, Q., Jeanloz, R.: J. Chem. Phys. 91, 5910 (1989)

    Article  ADS  Google Scholar 

  52. Duffy, T.S. Meade, C., Fei, Y., Mao, H.K. Hemley, R.J.: Am. Mineral. 80, 222 (1995)

    Google Scholar 

  53. Nguyen, J.H. Kruger, M.B. Jeanloz, R.: Phys. Rev. Lett. 78, 1936 (1997)

    Article  ADS  Google Scholar 

  54. Parise, J.B., Loveday, J.S., Nelmes, R.J., Kagi, H.: Phys. Rev. Lett. 83, 328 (1999)

    Article  ADS  Google Scholar 

  55. Miyamoto, H., Shinjo, T., Bando, Y., Takada, T.: J. Phys. Soc. Jpn. 23, 1421 (1967) (Fe(OH)2 can be classified as a wide gap Mott insulator. At ambient pressure it orders antiferromagnetically with space group \( P_{{2{\text{c}}}} \overline{1} \) at T N = 34 K with the Fe ferromagnetic sublattice spin direction alternating between 90 and 270° with respect to c-axis.)

  56. Parise, J.B., Marshall, W.G., Smith, R.I., Lutz, H.D., Möller, H.: Am. Mineral. 85, 189 (2000)

    Google Scholar 

  57. Pasternak, M.P., Xu, W.M., Rozenberg, G.Kh., Taylor, R.D., Jeanloz, R.: JMMM 265, L107 (2003)

    ADS  Google Scholar 

  58. Verwey, E.J.: Nature (Lond.) 144, 327 (1939)

    ADS  Google Scholar 

  59. Verwey, E.J., Haayman, P.W., Romeijan, F.C.: J. Chem. Phys. 15, 181 (1947)

    Article  ADS  Google Scholar 

  60. Reviews on several aspects of the Verwey transition published before 1980 are collected in the special issue of Philos. Mag. B 42 no. 3 (1980)

  61. Mott, N.F.: Festkorperprobleme 19, p 331 (1979) (Mott proposed that the electron assembly in magnetite above T v may be characterized as a Wigner glass; electrons are in a localized state generated through interactions with other localized electrons or with impurities or defects. At T = T V the Wigner glass transforms discontinuously into a Wigner crystal at lower T, so long as the electron assembly in the coordinated sites is subject to long range order.)

  62. Novák, P., Štĕpánková, H., Englich, J., Kohout, J., Brabers, V.A.M.: Phys. Rev. B 61, 1256 (2000)

    Article  ADS  Google Scholar 

  63. García, J., Subías, G., Proietti, M.G., Blasco, J., Renevier, H., Hodeau, J.L., Joly, Y.: Phys. Rev. B 63, 054110 (2001)

    Article  ADS  Google Scholar 

  64. Berry, F.J., Skinner, S., Thomas, M.F.: J. Phys. Condens. Matter 10, 215 (1998) and references therein

    Article  ADS  Google Scholar 

  65. Iizumi, M., Koetzle, T.F., Shirane, G., Chikazumi, S., Matsui, M., Todo, S.: Acta Crystallogr. B38, 2121 (1982)

    Google Scholar 

  66. Nasu, S.: Hyperfine Interact. 90, 59 (1975)

    Article  ADS  Google Scholar 

  67. Rozenberg, G.Kh., Milner, A.P., Pasternak, M.P., Hearne, G.R., Taylor, R.D.: Phys. Rev. B 58, 10283 (1998)

    Article  ADS  Google Scholar 

  68. Mizokawa, T., Namatame, H., Fujimori, A., Akeyama, K., Kondoh, H., Kuroda, H., Kosugi, N.: Phys. Rev. Lett. 67, 1638 (1991)

    Article  ADS  Google Scholar 

  69. Produced by D’Anvils Ltd (http://www.danvils.com)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe P. Pasternak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasternak, M.P., Taylor, R.D. Mössbauer spectroscopy methodology at the cutting-edge of high-pressure research. Hyperfine Interact 170, 15–32 (2006). https://doi.org/10.1007/s10751-006-9475-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-006-9475-2

Key words

Navigation