Skip to main content
Log in

The Electronic and Magnetic Properties of FCC Iron Clusters in FCC 4D Metals

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The electronic and magnetic structures of small FCC iron clusters in FCC Rh, Pd and Ag were calculated using the discrete variational method as a function of cluster size and lattice relaxation. It was found that unrelaxed iron clusters, remain ferromagnetic as the cluster sizes increase, while for relaxed clusters antiferromagnetism develops as the size increases depending on the host metal. For iron in Rh the magnetic structure changes from ferromagnetic to antiferromagnetic for clusters as small as 13 Fe atoms, whereas for Fe in Ag antiferromagnetism is exhibited for clusters of 24 Fe atoms. On the hand, for Fe in Pd the transition from ferromagnetism to antiferromagnetism occurs for clusters as large as 42 Fe atoms. The difference in the magnetic trends of these Fe clusters is related to the electronic properties of the underlying metallic matrix. The local d densities of states, the magnetic moments and hyperfine parameters are calculated in the ferromagnetic and the antiferromagnetic regions. In addition, the average local moment in iron-palladium alloys is calculated and compared to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubler, J.: J. Phys., Condens. Matter 15, V21 (2003)

    Article  Google Scholar 

  2. Abraham, S.C., Guttman, L., Kasper, J.S.: Phys. Rev. 127, 2052 (1962)

    Article  ADS  Google Scholar 

  3. Tsunoda, Y.: J. Phys., Condens. Matter 1, 10427 (1989); Tsunoda, Y., Nishioka, Y., Nicklow, M., J. Magn. Magn. Mater. 128, 133 (1993)

  4. Herper, H.C., Hoffmann, E., Entel, P.: Phys. Rev. B 60, 3839 (1999)

    Article  ADS  Google Scholar 

  5. Knoplfe, K., Sanratskii, L.M., Kubler, J.: Phys. Rev. B 62, 5564 (2001)

    ADS  Google Scholar 

  6. Spisak, D., Hafner, J.: J. Magn. Magn. Mater. 272–276, 1184 (2004)

    Article  Google Scholar 

  7. Nogueira, R., Petrilli, H.: Phys. Rev. B 60, 4120 (1999)

    Article  ADS  Google Scholar 

  8. Li, Z., Hashi, Y., Kawazoe, Y.: J. Magn. Magn. Mater. 167, 123 (1997)

    Article  ADS  Google Scholar 

  9. Ellis, D.E., Guo, J., Lam, D.J.: Rev. Solid State Sci. 5, 287 (1991)

    Google Scholar 

  10. Martin, J.I., Nogues, J., Liu, K., Vicent, J.L., Schuller, I.K.: J. Magn. Magn. Mater. 256, 449 (2003); Fassbender, J., Ravelosona, D., Samson, Y.: J. Phys., D. Appl. Phys. 37, R179 (2004)

    Google Scholar 

  11. Parfenova, V.P., Delyagin, N.N., Erzinkyan, A.L., Reyman, S.I.: Phys. Status Solidi, B 214, R1 (1999); Parfenova, V.P., Erzinkyan, A.L., Delyagin, N.N., Reyman, S.I.: Phys. Status Solidi, B 228, 731 (2001)

  12. Gubanov, V.A., Liechtenstein, A.I., Postnikov, A.V.: Magnetism and Electronic Structure of Crystals, Springer Series in Solid-State Sciences 98, p. 125. Springer, Berlin Heidelberg New York (1992)

  13. Ma, E., He, J.-H., Schilling, P.J.: Phys. Rev. B 55, 5542 (1997); Morales, M.A., Passamani, E.C., Baggio-Saitovitch, E.: Phys. Rev. B 66, 144422 (2002)

    Google Scholar 

  14. Manns, V., Scholz, B., Keune, W., Schletz, K.P., Braun, M., Wassermann, E.F.: J. Physique, Colloque C8(suppl. 12) 1149 (1988)

    Google Scholar 

  15. Moon, H., Kim, W., Oh, S., Park, J., Park, J.G., Cho, E., Lee, J., Ri, H.: J. Korean Phys. Soc. 36, 49 (2000); Shi, Y., Qian, D., Dong, G., Wang, D.: Phys. Rev., B 65, 172410 (2002)

  16. Hoshino, T., Shimizu, A., Zeller, R., Dederichs, P.H.: Phys. Rev. B 53, 5247 (1996)

    Article  ADS  Google Scholar 

  17. Elzain, M.E., Al Rawas, A.D., Yousif, A.A., Gismelseed, A.M., Rais, A., Al Omari, I., Widatallah, H.: Phys. Status Solidi, C 1, 1796 (2004)

    Article  ADS  Google Scholar 

  18. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Tech. Universitat Wien, Austria), 2001. ISBN 3-9501031-1-2

  19. Cottenier, S.: Density Functional Theory and the family of (L)APW-methods; a step-by-step introduction (Institute voor Kern-en Stralingsfysica, K. U. Leuven, Belgium), 2002, ISBN 90-807215-1-4 (to be found at http://www.wien2k.at/reg_user/textbooks)

  20. Averil, F.W., Ellis, D.E.: J. Chem. Phys. 59, 6412 (1973)

    Article  Google Scholar 

  21. Elzain, M.E., Ellis, D.E., Guenzberger, D.: Phys. Rev. B 34, 1430 (1986)

    Article  ADS  Google Scholar 

  22. Battocletti, M., Ebert, H.: Phys. Rev. B 53, 9776 (1996)

    Article  ADS  Google Scholar 

  23. Clogston, A.M., Matthias, B.T., Peter, M., Williams, H.J., Corenzwit, E., Sherwood, R.C.: Phys. Rev. 125, 541 (1962)

    Article  ADS  Google Scholar 

  24. Moruzzi, V.I., Marcus, P.M.: Phys. Rev. B 39, 471 (1989)

    Article  ADS  Google Scholar 

  25. Cable, J.W., Wollan, E.O., Koehler, W.C.: Phys. Rev. 138, A755 (1965)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Elzain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elzain, M.E., Yousif, A.A., Al Rawas, A.D. et al. The Electronic and Magnetic Properties of FCC Iron Clusters in FCC 4D Metals. Hyperfine Interact 164, 3–15 (2005). https://doi.org/10.1007/s10751-006-9228-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-006-9228-2

Key words

Navigation