Skip to main content

Advertisement

Log in

Laser Cooling and Spectroscopy of Relativistic C\(^{3+}\) Beams at the ESR

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We report on the first laser cooling of a bunched beam of multiply charged \(C^{3+}\) ions performed at the ESR (GSI) at a beam energy of \(E=1.47\) GeV. Moderate bunching provided a force counteracting the decelerating laser force of one counterpropagating laser beam. This versatile type of laser cooling lead to longitudinally space-charge dominated beams with an unprecedented momentum spread of \(\Delta p/p\approx 10^{-7}\). Concerning the beam energy and charge state of the ion, the experiment depicts an important intermediate step from the established field of laser cooling of ion beams at low energies toward the unique laser cooling scheme proposed for relativistic beams of highly charged heavy ions at SIS 300 (FAIR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schiffer J. P. and Kienle P., Z. Phys. A 321 (1985), 181.

    Article  Google Scholar 

  2. Schramm U. and Habs D., Progress in Particle and Nuclear Physics 53 (2004), 583–677.

    Article  ADS  Google Scholar 

  3. Schätz T., Schramm U. and Habs D., Nature (London) 412 (2001), 717.

    Article  ADS  Google Scholar 

  4. Schramm U., Schätz T. and Habs D., Phys. Rev. E 66 (2002), 036501.

    ADS  Google Scholar 

  5. Schramm U. et al., Journal of Physics 36 (2003), 561.

    Google Scholar 

  6. Steck M. J. Opt. Soc. Am. B 20 (2003), 1016.

    Article  ADS  Google Scholar 

  7. Steck M. et al., J. Phys. B 36, 991 (2003) and Phys. Rev. Lett. 77 (1996), 3803.

    Article  ADS  Google Scholar 

  8. Danared H. et al., J. Phys. B 36 (2003), 1003.

    Article  ADS  Google Scholar 

  9. Schramm U., Bussmann M. and Habs D., Nucl. Instrum. Methods, A 532 (2004), 348.

    ADS  Google Scholar 

  10. Schramm U. et al., LoI #18 FAIR APPA–PAC (2004).

  11. Johnson W. R. et al., At. Data Nucl. Data Tables 64 (1996), 279.

    Article  ADS  Google Scholar 

  12. Schramm U., Schätz T. and Habs D., Phys. Rev. Lett. 87 (2001), 184801.

    Article  ADS  Google Scholar 

  13. Hangst J. S. et al., Phys. Rev. Lett. 74 (1995), 4432.

    Article  ADS  Google Scholar 

  14. Miesner H.-J. et al., Nucl. Instr. Meth., Letter to the Editor, A 383 (1996), 634.

  15. Eisenbarth U. et al., Nucl. Instrum. Methods, A 441 (2000), 209.

    Article  ADS  Google Scholar 

  16. Ellison T. J. P. et al., Phys. Rev. Lett. 70 (1993), 790.

    Article  ADS  Google Scholar 

  17. Wanner B. et al., Phys. Rev. A 58 (1998), 2242.

    Article  ADS  Google Scholar 

  18. Atutov S. N. et al., Phys. Rev. Lett. 80 (1998), 2129.

    Article  ADS  Google Scholar 

  19. Saathoff G. et al., Phys. Rev. Lett. 91 (2003), 190403.

    Article  ADS  Google Scholar 

  20. Kim Y.-K. et al., Phys. Rev. A 44 (1991), 148.

    Article  ADS  Google Scholar 

  21. Tupitsyn I. I. and Shabaev V. M., priv.com. (2004).

  22. Edlen B. Phys. Scripta 28 (1983), 51.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Schramm.

Additional information

Funded by the German BMBF under contract number 06ML183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, U., Bussmann, M., Habs, D. et al. Laser Cooling and Spectroscopy of Relativistic C\(^{3+}\) Beams at the ESR. Hyperfine Interact 162, 181–188 (2005). https://doi.org/10.1007/s10751-005-9217-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9217-x

Key Words

Navigation