Skip to main content
Log in

Laser Accelerated, High Quality Ion Beams

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript


Intense beams of protons and heavy ions have been observed in ultra-intense laser-solid interaction experiments. Thereby, a considerable fraction of the laser energy is transferred to collimated beams of energetic ions (e.g. up to 50 MeV protons; 100 MeV fluorine), which makes these beams highly interesting for various applications. Experimental results indicate very short pulse duration and an excellent beam quality, leading to beam intensities in the TW range. To characterize the beam quality and its dependence on laser parameters and target conditions, we performed experiments at several high-power laser systems. We found a strong dependence on the target rear surface conditions allowing to tailor the ion beam by an appropriate target design. We also succeeded in the generation of heavy ion beams by suppressing the proton amount at the target surface. We will present recent experimental results demonstrating a transverse beam emittance far superior to accelerator-based ion beams. Finally, we will discuss the prospect of laser-accelerated ion beams as new diagnostics in laser-solid interaction experiements. Special fields of interest are proton radiography, electric field imaging, and relativistic electron transport inside the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Gitomer S. J. et al., Phys. Fluids 29 (1986), 2679.

    Article  ADS  Google Scholar 

  2. Snavely R. et al., Phys. Rev. Lett. 84 (2000), 640.

    Google Scholar 

  3. Wilks S. C. et al., Phys. Plasmas 8 (2001), 542.

    Article  ADS  Google Scholar 

  4. Roth M. et al., Phys. Rev. ST-AB 5 (2002), 061301.

    ADS  Google Scholar 

  5. Allen M. et al., Phys. Plasmas 10 (2003), 3283.

    Article  ADS  Google Scholar 

  6. Hatchett S. et al., Phys. Plasmas 7 (2000), 2076.

    Article  ADS  Google Scholar 

  7. Hegelich M. et al., Phys. Rev. Lett. 89 (2002), 85002.

    Article  ADS  Google Scholar 

  8. Roth M. et al., Phys. Rev. Lett. 86 (2001), 436.

    Article  ADS  Google Scholar 

  9. Cowan T. E. et al., Phys. Rev. Lett. 92 (2004), 204801.

    Article  ADS  Google Scholar 

  10. Humphries S. (ed.), Charged Particle Beams, Wiley, New Jersey, 1990.

    Google Scholar 

  11. Klaasen N. V. et al., Med. Phys. 24 (1997), 1924.

    Article  Google Scholar 

  12. Ruhl H. et al., Phys. Plasmas 11 (2004), L17.

    Article  ADS  Google Scholar 

  13. Fuchs J. et al., Phys. Rev. Lett. 91 (2003), 255002.

    Article  ADS  Google Scholar 

  14. Borghesi M. et al., Plasma Phys. Contr. Fusion 43 (2001), A267.

    Article  ADS  Google Scholar 

  15. Temporal M. et al., Phys. Plasmas 9 (2002), 3098.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, M., Blazevic, A., Brambrink, E. et al. Laser Accelerated, High Quality Ion Beams. Hyperfine Interact 162, 45–53 (2005).

Download citation

  • Published:

  • Issue Date:

  • DOI: