Skip to main content
Log in

Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe78Si9B13 Alloy Ribbons

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Amorphous Fe78Si9B13 alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T x = 722 K, the other one partially crystallized at T x = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Mössbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe78Si9B13 alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devaud-Rzepski J., Quivy A., Harmelin M., Chevalier J.-P. and Calvayrac Y., Electron Microscopy of the initial states of crystalyzation in ferrous glassy alloys: observation of a mode inversion, In: Baró M. D. and Clavaguera N. (eds.), Current Topics on Non-Crystalline Solids, Proceedings of the First International Workshop on Non-Crystalline Solids, World Scientific, 1986, pp. 231–236.

  2. Zauska A. and Matyja H., Crystallization characteristics of amorphous Fe-Si-B alloys, J. Mater. Sci. 18 (1983), 2163–2172.

    Article  Google Scholar 

  3. Ramanan V. R. V. and Fish G. E., Crystallization kinetics in Fe-B-Si metallic glasses, J. Appl. Phys. 53(3) (1982), 2273–2275.

    Article  ADS  Google Scholar 

  4. Rawers J. C., McCune R. A. and Adams A., Crystallization of amorphous Fe78B13Si9, J. Mater. Sci. Lett. 7 (1988), 958–960.

    Article  Google Scholar 

  5. Lu K. and Wang J. T., Activation energies for crystal nucleation and growth in amorphous alloys, Mater. Sci. Eng. A133 (1991), 500–503.

    Google Scholar 

  6. Linderoth S., González J. M., Hidalgo C., Liniers M. and Vicent J. L., Correlation between positron lifetime results and magnetic behaviour upon relaxation and crystallization of an iron-based amorphous alloy, Solid State Commun. 65(12) (1988), 1457–1460.

    Article  ADS  Google Scholar 

  7. Bang J. Y. and Lee R. Y., Crystallization of the metallic glass Fe78B13Si9, J. Mater. Sci. 26 (1991), 4961–4965.

    Article  Google Scholar 

  8. Li J.-M., Quan M.-X. and Hu Z.-Q., Spectra investigation on hall-petch relationship in nanocrystalline Fe78Si9B13 alloy, Appl. Phys. Lett. 69(11) (1996), 1559–1561.

    Article  ADS  Google Scholar 

  9. Chokhsi A. H., Rosen A., Karch J. and Gleiter H., Scr. Metall. 23 (1989), 1679.

    Article  Google Scholar 

  10. Gleiter H., Prog. Mater. Sci. 33 (1989), 223.

    Article  Google Scholar 

  11. Weertman J. R., Some unresolved issues concerning mechanical behavior of nanocrystalline metals, Mat. Sci. Forum 386–388 (2002), 519–520.

    Article  Google Scholar 

  12. Sun X., Cabral-Prieto A. and Jose Yacaman M., Sun W., Investigations on in situ nanocrystallization and magnetic properties for amorphous Fe78Si9B13 ribbons, Mater. Res. Soc. Symp. Proc. 562 (1999), 301–306.

    Google Scholar 

  13. Yavari A. R., Barrue R., Harmelin M. and Perron J. C., Magn. Magn. Mater., 69 (1987), 43.

    Article  ADS  Google Scholar 

  14. Huang D.-R. and Li J. C. M., High frequency magnetic properties of an amorphous Fe78Si9B13 ribbon improved by a. c. Joule heating, Mater. Sci. Eng. A133 (1991), 209–212.

    Google Scholar 

  15. Blum N. A., Moorjani K., Poehler T. O. and Satkiewicsz F. G., Mössbauer investigation of sputtered ferromagnetic amorphous Fe x B100 − x films, J. Appl. Phys. 53 (3) (1982), 2074–2076.; Chien C. L., Musser D., Gyogy E. M., Sherwood R. C., Chen H. S., Luborsky F. E. and Walter J. L., Phys. Rev., B 20 (1979), 283.

  16. Vavassori P., Ronconi F. and Puppin E., Surface crystallization and magnetic properties of amorphous Fe80B20 alloy, J. Appl. Phys. 82(12) (1997), 6177–6180.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cabral-Prieto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabral-Prieto, A., Garcia-Santibañez, F., López, A. et al. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe78Si9B13 Alloy Ribbons. Hyperfine Interact 161, 69–81 (2005). https://doi.org/10.1007/s10751-005-9169-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9169-1

Keywords

Navigation