Skip to main content
Log in

Oriented Growth of Nanocrystalline Gamma Ferric Oxide in Electrophoretically Deposited Films

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Films of nanocrystalline γ-Fe2O3 were deposited on silicon substrates by using the technique of electrophoretic deposition. The precursor powder was nanocrystalline γ-Fe2O3, which was synthesized, using DC arc plasma in the oxygen ambient by vapour–vapour interaction in gas phase condensation; at a stabilized arc current of 40 A. This powder was characterized by X-ray diffraction, Transmission Electron Microscopy, Vibrating Sample Magnetometer and Mössbauer Spectroscopy. An increase in directional coercivity was observed in case of films deposited on silicon substrates, which is dramatically significant. Preferred orientation of almost similar sized nanocrystalline magnetic domains in deposited films is evident from the results of X-ray diffraction and Transmission Electron Microscopy results. The preferred alignment of the nanocrystallites seems to be responsible for the significant changes observed in magnetic properties of films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichinose N., Ozaki Y. and Kashu S., Superfine Particle Technology, Sringer, London, 1992.

    Google Scholar 

  2. Gleiter H., Prog. Mater. Sci. 33 (1989), 223.

    Article  Google Scholar 

  3. Shinde S. R., Kulkarni S. D., Banpurkar A. G., Date S. K. and Ogale S. B., J. Appl. Phys. 88 (2000), 3.

    Article  Google Scholar 

  4. Pope N. M., Alsop R. C., Chang Y. A. and Sonith A. K. J., Biomed. Mater. Res. 28 (1994), 449.

    Article  Google Scholar 

  5. Stoner E. C. and Wohlfarth E. P., Philos. Trans. R. Soc. London Ser. A 240 (1948), 599.

    Article  ADS  Google Scholar 

  6. Bauer J., Seeger M., Zern A. and Kronmuller H., J. Appl. Phys. 80 (1996), 1667.

    Article  ADS  Google Scholar 

  7. Weeker J., Schnitzke K., Cerva H. and Grogger W., Appl. Phys. Lett. 67 (1995), 563.

    Article  ADS  Google Scholar 

  8. Yan X. and Xu Y., J. Appl. Phys. 79 (1996), 6013.

    Article  ADS  Google Scholar 

  9. Sanchez R. D., Rivas J., Vazquez-Vazquez C., Lopez-Quintela A., Causa M. T., Tovar M. O. and Seroff S., Appl. Phys. Lett. 68 (1996), 134.

    Article  ADS  Google Scholar 

  10. Schrefl T., Fischer R., Fidler J. and Kronmuller H., J. Appl. Phys. 76 (1994), 7053.

    Article  ADS  Google Scholar 

  11. Hu J., Hu B., Wang K. and Wang Z., J. Phys., Condens. Matter 7 (1995), L271.

    Article  ADS  Google Scholar 

  12. Feltin N. and Pileni M. P., J. Phys. IV France (1997), 7.

  13. Dormann J. L., Cherkaoui R., Spinu L., Nogues M., Lucari F., D'Orazio F., Fiorani D., Garcia A., Tronc E. and Jolivet J. P., J. Magn. Magn. Mater. 187 (1998), L139.

    Article  ADS  Google Scholar 

  14. Prodan D., Chaneac C., Tronc E., Jolivet J. P., Cherkaour R., Ezzir A., Nogues M. and Dormann J. L., J. Magn. Magn. Mater. 203 (1999), 63–65.

    Article  ADS  Google Scholar 

  15. Kurikka V. P. M. S., Ulman A., Dyal A., Tan X., Yang N.-L., Estournes C., Fournes L., Wattiaux A., White H. and Rafailorich M., Chem. Mater. 14 (2002), 1778–1787.

    Article  Google Scholar 

  16. Martinez B., O Bradors X., Balcells L., Rouanet A. and Monty C., Phys. Rev. Lett. 80 (1998), 1.

    Article  Google Scholar 

  17. Bee A., Masssart R. and Neu S., J. Magn. Magn. Mater 149 (1995), 6–9.

    Article  ADS  Google Scholar 

  18. Audram R. G. and Huguenard A. P., U.S. Patent 4302523, 1981.

  19. Ziolo R. F., U.S. Patent 4474866, 1984.

  20. McMichael R. D., Shull R. D., Swartzendruber L. J., Bennett L. H. and Watson R. E., J. Magn. Magn. Mater. 111 (1992), 29.

    Article  ADS  Google Scholar 

  21. Rosensweig R. E., Ferrohydrodynamics, Cambridge, MA, MIT Press, 1985.

    Google Scholar 

  22. Takahashi N., Kakuda N., Ueno A., Yamaguchi K. and Fujii T., J. Appl. Phys. 28 (1987), 244.

    Google Scholar 

  23. Jones H. E., Bissell P. R. and Chantrell R. W., J. Magn. Magn. Mater 26 (1990), 21.

    Google Scholar 

  24. Chhabra V., Ayyub P., Chattopadhyay S. and Maitra A. N. N., Mater. Lett. 26 (1996), 21.

    Article  Google Scholar 

  25. Ngo E., Nothwang W., Cole M. and Hubbard C., U.S. Army Research Laboratory, Weapons and Materials Research Directorate, APG, MD 21005.

  26. Someswar D., Bull. Mater. Sci. 23 (April 2000), 2125–2129.

    Google Scholar 

  27. Nelson P. S., Sarkar P. and Datta S., Am. Ceram. Soc. Bull. 75 (1996), 48.

    Google Scholar 

  28. Datta S., Bull. Mater. Sci. 23(2) (April 2000), 125–129.

    Article  Google Scholar 

  29. Madhu Kumar P., Balasubramanian C., Sali N. D., Bhoraskar S. V., Rohatgi V. K. and Badrinarayanan S., Mater. Sci. Eng., B B63 (1999), 215–227.

    Article  Google Scholar 

  30. Nikumbh A. K., J. Mater. Sci. 25 (1990), 3773–3779.

    Article  Google Scholar 

  31. Clark P. E. and Morrish A. H., AIP conference proceedings No. 18, “Magnetism and Magnetic Materials”, Bostan, 1937 (American Institute of Physics, New York 1974) p. 1412.

  32. Rane K. S., Nikumbh A. K. and Mukhedkar A. J., J. Mater. Sci. 16 (1981), 2387.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bhoraskar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhave, T.M., Balasubramanian, C., Nagar, H. et al. Oriented Growth of Nanocrystalline Gamma Ferric Oxide in Electrophoretically Deposited Films. Hyperfine Interact 160, 199–209 (2005). https://doi.org/10.1007/s10751-005-9165-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9165-5

Keywords

Navigation