Skip to main content
Log in

Freshwater dissolved oxygen dynamics: changes due to glyphosate, 2,4-D, and their mixture, both under clear and turbid-organic conditions

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To evaluate the effect of glyphosate, 2,4-D, and their combination on daily dissolved oxygen saturation percentage (DO%) in freshwater, two separate outdoor mesocosm experiments were performed. The experiments were conducted under contrasting conditions: one in clear mesotrophic status lasting 23 days, and the other in organic turbid eutrophic conditions lasting 21 days. Single concentrations were applied as commercial formulations at two levels. Samples of phytoplankton (micro + nano, picoeukaryotes, picocyanobacteria), mixotrophic algae, and heterotrophic bacteria were analyzed at four sampling dates. Increases in DO levels were consistently observed in both clear and turbid systems treated with glyphosate, either alone or in combination with 2,4-D, suggesting that DO is a sensitive indicator. DO increased in all glyphosate treatments. DO increases reflected different changes in phytoplankton communities, increasing with micro + nano phytoplankton abundance in the clear experiment but with increased picocyanobacteria in the turbid. In contrast, 2,4-D reduced DO levels, but only in the turbid system, where micro + nano phytoplankton abundance decreased. The clear system showed greater resilience by restoring DO levels before the turbid one. Mainly additive effects of the herbicide mixture were observed on dissolved oxygen levels (DO%), but a distinct synergistic decrease was detected within turbid systems, underscoring the importance of considering turbidity as a contributing factor in the freshwater impacts of herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available by emailing the corresponding author.

References

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • Andersson, A., S. Falk, G. Samuelsson & Å. Hagström, 1989. Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas Sp. Microbial Ecology 17: 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Backhaus, T., Å. Arrhenius & H. Blanck, 2004. Toxicity of a mixture of dissimilarly acting substances to natural algal communities: predictive power and limitations of independent action and concentration addition. Environmental Science and Technology 38: 6363–6370.

    Article  CAS  PubMed  Google Scholar 

  • Bourrelly, P., 1970. Les algues d’eau douce, III. Boubée & Cie, Paris:

    Google Scholar 

  • Boyle, T. P., 1980. Effects of the aquatic herbicide 2,4-D DMA on the ecology of experimental ponds. Environmental Pollution Series a, Ecological and Biological 21: 35–49.

    Article  CAS  Google Scholar 

  • Caquet, T., L. Lagadic, G. Monod, J. C. Lacaze & A. Couté, 2001. Variability of physicochemical and biological parameters between replicated outdoor freshwater lentic mesocosms. Ecotoxicology 10: 51–66.

    Article  CAS  PubMed  Google Scholar 

  • Castro Berman, M. C., D. J. G. Marino, M. V. Quiroga & H. Zagarese, 2018. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina. Chemosphere 200: 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Cottingham, K. L., S. R. Carpenter & A. L. S. Amand, 1998. Responses of epilimnetic phytoplankton to experimental nutrient enrichment in three small seepage lakes. Journal of Plankton Research 20: 1889–1914.

    Article  Google Scholar 

  • Couderchet, M. & G. Vernet, 2003. Pigments as biomarkers of exposure to the vineyard herbicide flazasulfuron in freshwater algae. Ecotoxicology and Environmental Safety 55: 271–277.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J. C., 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. Journal of the Fisheries Board of Canada 32: 2295–2332.

    Article  Google Scholar 

  • Drzyzga, D. & J. Lipok, 2018. Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria. Journal of Applied Phycology 30: 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Dukatz, F., R. Ferrati & G. Canziani, 2006. Clasificación de lagos someros pampeanos mediante imágenes Landsat TM. Biología Acuática.

  • FAOSTAT, 2020. http://www.fao.org/faostat/en/#home.

  • Faust, M., R. Altenburger, T. Backhaus, H. Blanck, W. Boedeker, P. Gramatica, V. Hamer, M. Scholze, M. Vighi & L. H. Grimme, 2001. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquatic Toxicology 56: 13–32.

    Article  CAS  PubMed  Google Scholar 

  • Fleeger, J. W., K. R. Carman & R. M. Nisbet, 2003. Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment 317: 207–233.

    Article  CAS  PubMed  Google Scholar 

  • Gasol, J. M., U. L. Zweifel, F. Peters, J. A. Fuhrman & Å. Hagström, 1999. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Applied and Environmental Microbiology 65: 4475–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilikchyan, I. N., R. Michael, L. McKay, J. P. Zehr, S. T. Dyhrman & G. S. Bullerjahn, 2009. Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria. Environmental Microbiology 11: 1314–1324.

    Article  CAS  PubMed  Google Scholar 

  • Ilikchyan, I. N., R. Michael, L. McKay, O. A. Kotovaya, R. Condon & G. S. Bullerjahn, 2010. Seasonal expression of the picocyanobacterial phosphonate transporter gene phnD in the Sargasso Sea. Frontiers in Microbiology 1: 135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Izaguirre, I. & A. Vinocur, 1994. Typology of shallow lakes of the Salado River basin (Argentina), based phytoplankton communities. Hydrobiologia 277: 49–62.

    Article  Google Scholar 

  • King, R. S., R. A. Brain, J. A. Back, C. Becker, M. V. Wright, V. Toteu Djomte, Scott W. Casan, S. R. Virgil, B. W. Brooks, A. L. Hosmer & C. K. Chambliss, 2015. Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in field-based stream mesocosms. Environmental Toxicology and Chemistry 35: 660–675.

    Article  Google Scholar 

  • Knauer, K. & U. Hommen, 2012. Sensitivity, variability, and recovery of functional and structural endpoints of an aquatic community exposed to herbicides. Ecotoxicology and Environmental Safety 78: 178–183.

    Article  CAS  PubMed  Google Scholar 

  • Kobraei, M. E. & D. S. White, 1996. Effects of 2,4-Dichlorophenoxyacetic acid on Kentucky algae: simultaneous laboratory and field toxicity testings. Archives of Environmental Contamination and Toxicology 31: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Lampert, W., W. Fleckner, E. Pott, U. Schober & K. U. Störkel, 1989. Herbicide Effects on Planktonic Systems of Different Complexity, Environmental Bioassay Techniques and their Application Springer, Dordrecht: 415–424.

    Chapter  Google Scholar 

  • Lin, W., Z. Zhang, Y. Chen, Q. Zhang, M. Ke, T. Lu & H. Qian, 2023. The mechanism of different cyanobacterial responses to glyphosate. Journal of Environmental Sciences 125: 258–265.

    Article  CAS  Google Scholar 

  • Lozano, V. L., 2022. Hidden impacts of environmental stressors on freshwater communities could be revealed at lower concentrations by correlation of abundances network analyses: an example with herbicides glyphosate, 2, 4-D, and their mixtures. Austral Ecology 47: 1144–1153.

    Article  Google Scholar 

  • Lozano, V. L. & H. N. Pizarro, 2024. Glyphosate lessons: is biodegradation of pesticides a harmless process for biodiversity? Environmental Sciences Europe 36: 55.

    Article  Google Scholar 

  • Lozano, V. L., A. Vinocur, CSy. García, L. Allende, D. S. Cristos, D. Rojas, M. Wolansky & H. Pizarro, 2018. Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and periphyton communities: a microcosms approach. Ecotoxicology and Environmental Safety 148: 1010–1019.

    Article  CAS  Google Scholar 

  • Lozano, V. L., C. E. Miranda, A. L. Vinocur, C. González, F. Unrein, M. J. Wolansky & H. N. Pizarro, 2019. Turbidity matters: differential effect of a 2, 4-D formulation on the structure of microbial communities from clear and turbid freshwater systems. Heliyon 5(8): e02221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda, C. E., C. D. Clauser, V. L. Lozano, D. H. Cataldo & H. N. Pizarro, 2021. An invasive mussel is in trouble: how do glyphosate, 2, 4-D and its mixture affect Limnoperna fortuneiʹs survival? Aquatic Toxicology 239: 105957.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, T. H., M. S. Heard, N. J. Isaac, D. B. Roy, D. Procter, F. Eigenbrod & J. M. Bullock, 2015. Biodiversity and resilience of ecosystem functions. Trends in Ecology and Evolution 30: 673–684.

    Article  PubMed  Google Scholar 

  • Pålsson, C. & W. Granéli, 2004. Nutrient limitation of autotrophic and mixotrophic phytoplankton in a temperate and tropical humic lake gradient. Journal of Plankton Research 26: 1005–1014.

    Article  Google Scholar 

  • Peck, L. S., 2011. Organisms and responses to environmental change. Marine Genomics 4: 237–243.

    Article  PubMed  Google Scholar 

  • Peña, M. A., S. Katsev, T. Oguz & D. Gilbert, 2010. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 7: 933–957.

    Article  Google Scholar 

  • Pérez, G. L., A. Torremorell, H. Mugni, P. Rodriguez, M. S. Vera, M. D. Nascimento, L. Allende, J. Bustingorry, R. Escaray, M. Ferraro, I. Izaguirre, H. Pizarro, C. Bonetto, D. P. Morris & H. Zagarese, 2007. Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications 17: 2310–2322.

    Article  PubMed  Google Scholar 

  • Pizarro, H., E. Di Fiori, R. Sinistro, P. Rodríguez, M. Ramírez, A. Vinocur & D. Cataldo, 2015a. Impact of multiple anthropogenic stressors on freshwater: how do glyphosate and the invasive mussel Limnoperna fortunei affect microbial communities and water quality? Ecotoxicology 25: 56–68.

    Article  Google Scholar 

  • Pizarro, H., M. S. Vera, A. Vinocur, G. Pérez, M. Ferraro, R. M. Helman & M. dos Santos Afonso, 2015b. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environmental Science and Pollution Research 23: 5143–5153.

    Article  PubMed  Google Scholar 

  • Pollegioni, L., E. Schonbrunn & D. Siehl, 2011. Molecular basis of glyphosate resistance–different approaches through protein engineering. The FEBS Journal 278: 2753–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirós, R. & E. Drago, 1999. The environmental state of Argentinean lakes: an overview. Lakes and Reservoirs: Research and Management 4: 55–64.

    Article  Google Scholar 

  • Quirós, R., A. M. Rennella, M. A. Boveri, J. J. Rosso & A. Sosnovsky, 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12: 175–185.

    Google Scholar 

  • Relyea, R. A., 2009. A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159: 363–376.

    Article  PubMed  Google Scholar 

  • Schiaffino, M. R., J. M. Gasol, I. Izaguirre & F. Unrein, 2013. Picoplankton abundance and cytometric group diversity along a trophic and latitudinal lake gradient. Aquatic Microbial Ecology 68: 231–250.

    Article  Google Scholar 

  • Schneider, L. K., K. Anestis, J. Mansour, A. A. Anschütz, N. Gypens, P. J. Hansen & W. Stolte, 2020. A dataset on trophic modes of aquatic protists. Biodiversity Data Journal 8: e56648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage & T. Ideker, 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigee, D., 2005. Freshwater Microbiology: Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environment, Wiley:

    Google Scholar 

  • Singh, P. K. & A. K. Shrivastava, 2016. Role of initial cell density of algal bioassay of toxic chemicals. Journal of Basic Microbiology 56: 812–819.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., 2014. Insight into the mode of action of 2, 4-dichlorophenoxyacetic acid (2, 4-D) as an herbicide. Journal of Integrative Plant Biology 56: 106–113.

    Article  CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency, 1980. Manual of Analytical Methods for the Analysis of Pesticides in Humans and Environmental Samples, U.S. Environmental Protection Agency, Washington, DC:

    Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung Für Theoretische und Angewandte Limnologie: Mitteilungen 9: 1–38.

    Google Scholar 

  • Venrick, E. L., 1978. How Many Cells to Count? In Sournia, A. (ed), Phytoplankton Manual UNESCO, Paris: 167–180.

    Google Scholar 

  • Vera, M. S., L. Lagomarsino, M. Sylvester, G. Pérez, P. Rodríguez, H. Mugni, R. Sinistro, M. Ferraro, C. Bonetto, H. Zagarese & H. Pizarro, 2010. New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19: 710–721.

    Article  CAS  PubMed  Google Scholar 

  • Vera, M. S., E. Di Fiori, L. Lagomarsino, R. Sinistro, R. Escaray, M. M. Iummato, A. Juárez, M. C. Ríos de Molina, G. Tell & H. Pizarro, 2012. Direct and indirect effects of the glyphosate formulation Glifosato Atanor® on freshwater microbial communities. Ecotoxicology 21: 1805–1816.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., X. Jin, Q. Bu, L. Jiao & F. Wu, 2008. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids and Surfaces a: Physicochemical and Engineering Aspects 316: 245–252.

    Article  CAS  Google Scholar 

  • Yu, Z., J. Yang, S. Amalfitano, X. Yu & L. Liu, 2014. Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir. Scientific Reports 4: 5821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, X., Y. Sun, X. Zhang, H. Heng, H. Nan, L. Zhang, Y. Huang & Z. Yang, 2016. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus. Chemosphere 162: 243–251.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by PICT 2014.1586, UBACyT 20020130100248BA, and PIP 11220130100399. The authors would like to express their gratitude to the editor and two anonymous reviewers for their invaluable comments which contributed to the enhancement of this article. The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Lozano or H. N. Pizarro.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest or financial involvement that could be perceived as having influenced the research, analysis, or interpretation presented in this work.

Additional information

Handling editor: Kathi Jo Jankowski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, V.L., Miranda, C.E., Vinocur, A.L. et al. Freshwater dissolved oxygen dynamics: changes due to glyphosate, 2,4-D, and their mixture, both under clear and turbid-organic conditions. Hydrobiologia (2024). https://doi.org/10.1007/s10750-024-05594-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-024-05594-3

Keywords

Navigation