Skip to main content
Log in

The effect of shoreline habitats on native and non-native fish species in a set of Neotropical reservoirs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biodiversity is declining worldwide due to anthropogenic impacts, especially noxious for freshwater ecosystems, considering their close relationship with human activities. Damming is one of the most harmful human impacts that leads to the loss of several riverine fish through habitat loss or change. Herein, we aimed to assess the relationship between the composition of fish assemblages in reservoirs and the availability of littoral habitats, and whether these patterns differ between native and non-native species. Fish assemblages of fifteen reservoirs from up to downstream the Paraíba do Sul river basin were evaluated. Habitat availability was more important for native than for non-native species, after controlling for the influence of reservoir features. Local drivers were crucial for the occurrence of non-native species which thrived in the absence of complex habitats. Macrophytes seemed to play two key but quite antagonistic roles for fish species. They were positively related to native small characids, probably acting as shelter against predation, but they were also related to hypoxic conditions in eutrophic reservoirs. These findings stress the importance of preserving or restoring physically complex habitats as beneficial for native fish species through providing grounds for feeding (catfishes on leaves) and recruitment (juveniles of characids in macrophytes banks).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The datasets analysed during the current study are available from the corresponding author upon reasonable request.

References

  • Acreman, M., K. Hughes, A. Arthington, D. Tickner & M. Dueñas, 2019. Protected areas and freshwater biodiversity: a novel systematic review distils eight lessons for effective conservation. Conservation Letters 13: e12684. https://doi.org/10.1111/conl.12684.

    Article  Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132. https://doi.org/10.1590/S1519-69842008000500019.

    Article  CAS  Google Scholar 

  • Akhurst, D. J., G. B. Jones, M. Clark & A. Reichelt-Brushett, 2017. Effects of fish and macrophytes on phytoplankton and zooplankton community structure in a subtropical freshwater reservoir. Limnologica 62: 5–18. https://doi.org/10.1016/j.limno.2016.09.009.

    Article  CAS  Google Scholar 

  • Alexander, M. E., H. Kaiser, O. L. F. Weyl & J. T. A. Dick, 2014. Habitat simplification increases the impact of a freshwater invasive fish. Environmental Biology of Fishes. https://doi.org/10.1007/s10641-014-0278-z.

    Article  Google Scholar 

  • Anderson, M. J., 2008. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Article  Google Scholar 

  • Andrade, G.S., & F.M. Pelicice, 2022. Coexistence of endemic peacock basses (Cichla) in a Neotropical reservoir (Cichlidae: Cichliformes). Neotropical Ichthyology 20: https://doi.org/10.1590/1982-0224-2022-0039

  • Araújo, F. G., M. C. C. de Azevedo, G. H. S. Guedes & B. C. T. Pinto, 2023. Trait–environment relationship of riverine fish assemblages across a human footprint mosaic. Hydrobiologia. https://doi.org/10.1007/s10750-023-05370-9.

    Article  Google Scholar 

  • Bittencourt, S. C. S., D. M. Zacardi, T. Monteiro, L. Nakayama & H. L. Queiroz, 2020. Juvenis de peixes associados a macrófitas aquáticas em ambientes de várzea na Amazônia Central, Brasil. Biota Amazônia 10: 38–45.

    Google Scholar 

  • Bizerril, C. R. S. F., 1999. A ictiofauna da bacia do rio Paraíba do Sul. biodiversidade e padrões biogeográficos. Brazilian Archives of Biology and Technology 42: 233–250. https://doi.org/10.1590/S1516-89131999000200014.

    Article  Google Scholar 

  • Blackburn, T. M., P. Pyšek, S. Bacher, J.T. Carlton, R.P. Duncan, V. Jarošík, J. R. U. Wilson, & D.M. Richardson, 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26, 333–339.

  • Blanchet, G., P. Legendre & D. Borcard, 2008. Forward selection of spatial explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Blanchet, S., F. Leprieur, O. Beauchard, J. Staes, T. Oberdorff & S. Brosse, 2009. Broad-scale determinants of non-native fish species richness are context-dependent. Proceedings of the Royal Society b: Biological Sciences 276: 2385–2394. https://doi.org/10.1098/rspb.2009.0156.

    Article  PubMed Central  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R, Springer Science, New York:, 319.

    Book  Google Scholar 

  • Brauner, C. J., C. L. Ballantyne, D. J. Randall & A. L. Val, 1995. Air breathing in the armoured catfish (Hoplosternum littorale) as an adaptation to hypoxic, acidic, and hydrogen sulphide rich waters. Canadian Journal of Zoology 73: 739–744. https://doi.org/10.1139/z95-086.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Casatti, L., H. F. Mendes & K. M. Ferreira, 2003. Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, Southeastern Brazil. Brazilian Journal of Biology 63: 213–222. https://doi.org/10.1590/S1519-69842003000200006.

    Article  CAS  Google Scholar 

  • Christensen, D. L., B. J. Herwig, D. E. Schindler & S. R. Carpenter, 1996. Impacts of lakeshore residential development on course woody debris in north temperate lakes. Ecological Applications 6: 1143–1149.

    Article  Google Scholar 

  • Clavel, J., R. Julliard & V. Devictor, 2010. Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9: 222–228. https://doi.org/10.1890/080216.

    Article  Google Scholar 

  • Connor, N. A., 1991. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 85: 504–512.

    Article  Google Scholar 

  • Corrêa, F., M. C. Claudino, R. F. Bastos, et al., 2012. Feeding ecology and prey preferences of a piscivorous fish in the Lagoa do Peixe National Park, a Biosphere Reserve in Southern Brazil. Environmental Biology of Fishes 93: 1–12. https://doi.org/10.1007/s10641-011-9881-4.

    Article  Google Scholar 

  • Cuthbert, R. N., C. Diagne, E. J. Hudgins, A. Turbelin, D. A. Ahmed, C. Albert, T. W. Bodey, E. Briski, F. Essl & P. J. Haubrock, 2022. Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment 819: 153404. https://doi.org/10.1016/j.scitotenv.2022.153404.

    Article  CAS  PubMed  Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x.

    Article  Google Scholar 

  • Delariva, R. L., A. A. Agostinho, K. Nakatani & G. Baumgartner, 1994. Ichthyofauna associated to aquatic macrophytes in the Upper Paraná river floodplain. Revista UNIMAR 16: 41–60.

    Google Scholar 

  • Dray, S., P. Legendre, & G. Blanchet, 2016. Packfor: Forward Selection with permutation (Canoco p.46). R packageversion 0.0-8/r136. https://R-Forge.R-project.org/projects/sedar/

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182. https://doi.org/10.1017/S1464793105006950.

    Article  PubMed  Google Scholar 

  • Duncan, R. P., T. M. Blackburn & D. Sol, 2003. The ecology of bird introductions. Annual Review of Ecology, Evolution, and Systematics 34: 71–98. https://doi.org/10.1146/annurev.ecolsys.34.011802.132353.

    Article  Google Scholar 

  • Elton, C. S., 1958. The ecology of invasions by animals and plants, Methuen:

    Book  Google Scholar 

  • Franco, A. C. S., L. N. Santos, A. C. Petry & E. García-Berthou, 2018. Abundance of invasive peacock bass increases with water residence time of reservoirs in southeastern Brazil. Hydrobiologia 817: 155–166.

    Article  CAS  Google Scholar 

  • Franco, A. C. S., E. García-Berthou & L. N. Santos, 2021. Ecological impacts of an invasive top predator fish across South America. Science of the Total Environment 71: 143296. https://doi.org/10.1016/j.scitotenv.2020.143296.

    Article  CAS  Google Scholar 

  • Franco, A. C. S., A. C. Petry, M. R. Tavares, T. R. G. de Fátima & L. N. Santos, 2022b. Global distribution of the South American peacock basses Cichla spp. follows human interference. Fish and Fisheries 23: 407–421.

    Article  Google Scholar 

  • Franco, A.C.S., A.C. Petry, E. García-Berthou, & L.N. Santos, 2022a. Invasive peacock basses (Cichla spp.) and decreased abundance of small native fish in Brazilian reservoirs. Aquatic Conservation: Marine and Freshwater Ecosystems. https://doi.org/10.1002/aqc.3874

  • Fukushima, M., S. Kameyama, M. Kaneko, K. Nakao & E. A. Steel, 2007. Modelling the effects of dams on freshwater fish distributions in Hokkaido, Japan. Freshwater Biology 52: 1511–1524.

    Article  Google Scholar 

  • Ganassin, M. J. M., R. Muñoz-Mas, F. J. M. Oliveira, C. M. Muniz, N. C. L. Santos, E. García-Berthou & L. C. Gomes, 2021. Effects of reservoir cascades on diversity, distribution, and abundance of fish assemblages in three Neotropical basins. Science of the Total Environment 778: 146246. https://doi.org/10.1016/j.scitotenv.2021.146246.

    Article  CAS  PubMed  Google Scholar 

  • Garavello, J. C. & J. P. Garavello, 2004. Spatial distribution and interaction of four species of the catfish genus Hypostomus Lacépède with bottom of Rio São Francisco, Canindé do São Francisco, Sergipe, Brazil (Pisces, Loricariidae, Hypostominae). Brazilian Journal of Biology 64: 103–141. https://doi.org/10.1590/S1519-69842004000400006.

    Article  Google Scholar 

  • Geraldes, A. M. & M. J. Boavida, 2005. Seasonal water level fluctuations: implications for reservoir limnology and management. Lakes & Reservoirs 10: 59–69. https://doi.org/10.1111/j.1440-1770.2005.00257.x.

    Article  Google Scholar 

  • González-Moreno, P., J. M. Diez, I. Ibáñez, X. Font & M. Vilà, 2014. Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Diversity and Distributions 20: 720–731. https://doi.org/10.1111/ddi.12206.

    Article  Google Scholar 

  • Gorman, O. T. & J. R. Karr, 1978. Habitat structure and stream fish communities. Ecology 59: 507–515.

    Article  Google Scholar 

  • Grill, G., B. Lehner, A. E. Lumsdom, G. K. MacDonald, C. Zarfl & C.R. Liermann, 2015. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letter 10: 015001.

    Article  Google Scholar 

  • Grill, G., B. Lehner, M. Thieme, B. Geenen, D. Tickner, F. Antonelli, S. Babu, P. Borrelli, L. Cheng & H. Crochetiere, 2019. Mapping the world’s free-flowing rivers. Nature 569: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Guedes, G. H. S. & F. G. Araújo, 2022. Underwater drones reveal different fish community structures on the steep slopes of a tropical reservoir. Hydrobiologia 849: 1301–1312. https://doi.org/10.1007/s10750-021-04790-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobbs, R. J. & L. F. Huenneke, 1992. Disturbance, diversity, and invasion – implications for conservations. Conservation Biology 6: 324–337. https://doi.org/10.1046/j.1523-1739.1992.06030324.x.

    Article  Google Scholar 

  • Honji, R. M., C. E. Tolussi, D. Caneppele, et al., 2017. Biodiversidade e conservação da ictiofauna ameaçada de extinção da bacia do rio Paraíba do Sul. Revista Da Biologia 17: 18–30. https://doi.org/10.7594/revbio.17.02.05.

    Article  Google Scholar 

  • Hui, C., P. Pyšek & D. M. Richardson, 2023. Disentangling the relationships among abundance, invasiveness and invasibility in trait space. NPJ Biodivers 2: 13. https://doi.org/10.1038/s44185-023-00019-1.

    Article  Google Scholar 

  • Huntsman, B. M. E.R. Merriam, C.T. Roja, & J.T. Petty, 2022. Non-native species limit stream restoration benefits for brook trout. Restoration Ecology 31: e13678. https://doi.org/10.1111/rec.13678.

    Article  Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Jennings, M. J., M. A. Bozek, G. R. Hatzenbeler, E. E. Emmons & M. D. Staggs, 1999. Cumulative effects of incremental shoreline habitat modification on fish assemblages in north temperate lakes. North American Journal of Fisheries Management 19: 18–27.

    Article  Google Scholar 

  • Jepsen, D. B., K. O. Winemiller & D. C. Taphorn, 1997. Temporal patterns of resource partitioning among Cichla species in a Venezuelan blackwater river. Journal of Fish Biology 51: 1085–1108. https://doi.org/10.1111/j.1095-8649.1997.tb01129.x.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, I. M., 1986. Plant invasion windows – a time-based classification of invasion potential. Biological Reviews of the Cambridge Philosophical Society 61: 369–394.

    Article  Google Scholar 

  • Kahn, J. R., W. F. Vásquez & C. E. de Rezende, 2017. Choice modeling of system-wide or large scale environmental change in a developing country context: Lessons from the Paraíba do Sul River. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.04.059.

    Article  PubMed  Google Scholar 

  • Kindt, R., 2017. Package “BiodiversityR” for Community Ecology and Suitability Analysis. R package version 2.8–0. https://cran.r-project.org/web/packages/BiodiversityR/BiodiversityR.pdf

  • Kottek, M., J. Grieser, C. Beck, et al., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15: 259–263. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Kovalenko, K.E., E.D. Dibble, A.A. Agostinho, & F.M. Pelicice, 2010a. Direct and indirect effects of an introduced piscivore, Cichla kelberi and their modification by aquatic plants. Hydrobiologia: 245–253.

  • Kovalenko, K.E., E.D. Dibble, A.A. Agostinho, & F.M. Pelicice, 2010b. Recognition of non-native peacock bass, Cichla kelberi by native prey: Testing the naiveté hypothesis. Biological Invasions. https://doi.org/10.1007/s10530-010-9698-7

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical ecology, 3rd ed. Elsevier, Amsterdam:

    Google Scholar 

  • Leprieur, F., O. Beauchard, S. Blanchet, T. Oberdorff & S. Brosse, 2008. Fish Invasions in the World’s River Systems: when natural processes are blurred by human activities. Plos Biology 6: e28. https://doi.org/10.1371/journal.pbio.0060028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, S.A., 1981. Mechanisms for the generation and maintenance of diversity. In: The mathematical theory of the dynamics of biological populations, Academic Press, London, England.

  • Lewis, J. S., S. Spaulding, H. Swanson, W. Keeley, A. R. Gramza, S. VandeWoude & K. R. Crooks, 2021. Human activity influences wildlife populations and activity patterns: implications for spatial and temporal refuges. Ecosphere 12: e03487. https://doi.org/10.1002/ecs2.3487.

    Article  Google Scholar 

  • Lima-Junior, S. E. & R. Goitein, 2003. Ontogenetic diet shifts of a Neotropical catfish, Pimelodus maculatus (Siluriformes, Pimelodidae): an ecomorphological approach. Environmental Biology of Fishes 68: 73–79. https://doi.org/10.1023/A:1026079011647.

    Article  Google Scholar 

  • Liu, X., T. M. Blackburn, T. Song, X. Wang, C. Huang & Y. Li, 2020a. Animal invaders threaten protected areas worldwide. Nature Communications 11: 1–3. https://doi.org/10.1038/s41467-020-16719-2.

    Article  CAS  Google Scholar 

  • Liu, C., C. Wolter, W. Xian & J. M. Jeschke, 2020b. Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences 117: 23643–23651. https://doi.org/10.1073/pnas.2004289117.

    Article  CAS  Google Scholar 

  • Liu, X., J. D. Olden, R. Wu, S. Ouyang & X. Wu, 2022. Dam construction impacts fish biodiversity in a subtropical river network, China. Diversity 14: 476. https://doi.org/10.3390/d14060476.

    Article  CAS  Google Scholar 

  • Loures, R. C. & P. S. Pompeu, 2019. Temporal changes in fish diversity in lotic and lentic environments along a reservoir cascade. Freshwater Biology 64: 1806–1820. https://doi.org/10.1111/fwb.13372.

    Article  Google Scholar 

  • Mazzoni, R., M. P. Pinto, R. Iglesias-Rios & R. Costa, 2018. Fish movement in an Atlantic forest stream. Neotropical Ichthyology 16: e170065. https://doi.org/10.1590/1982-0224-20170065.

    Article  Google Scholar 

  • Mello, W. Z., 2001. Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro, Brazil. Environmental Pollution 114: 235–242. https://doi.org/10.1016/S0269-7491(00)00209-8.

    Article  PubMed  Google Scholar 

  • Mendonça, H. S., A. C. A. Santos, M. M. Martins & F. G. Araújo, 2018. Size-related and seasonal changes in the diet of the non-native Cichla kelberi Kullander & Ferreira, 2006 in a lowland reservoir in the southeastern Brazil. Biota Neotropica 18: e20170493.

    Article  Google Scholar 

  • Miranda, L. E., M. Spickard, T. Dunn, K. M. Webb, J. N. Aycock & K. Hunt, 2010. Fish habitat degradation in US reservoirs. Fisheries 35: 175–184.

    Article  Google Scholar 

  • Moraes, M. B., C. Natacha, M. Polaz & E. P. Caramaschi, 2017. Espécies exóticas e alóctones da Bacia do Rio Paraíba do Sul: implicações para a conservação. Biodiversidade Brasileira 7: 34–54.

    Google Scholar 

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Novaes, J. L. C., E. P. Caramaschi & K. O. Winemiller, 2004. Feeding of Cichla monoculus Spix, 1829 (Teleostei: Cichlidae) during and after reservoir formation in the Tocantins River, Central Brazil. Acta Limnologica Brasiliensia 16: 41–49.

    Google Scholar 

  • Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P Legendre, D McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, E. Szoecs, & H. Wagner, 2016. vegan: Community ecology package. R package version 2.4-1. https://CRAN.R-project.org/package=vegan

  • Ovalle, A. R. C., C. F. Silva, C. E. Rezende, et al., 2013. Long-term trends in hydrochemistry in the Paraíba do Sul River, southeastern Brazil. Journal of Hydrology 481: 191–203. https://doi.org/10.1016/j.jhydrol.2012.12.036.

    Article  CAS  Google Scholar 

  • Pacheco, F. S., M. Miranda, L. P. Pezzi, et al., 2017. Water quality longitudinal profile of the Paraíba do Sul River, Brazil during an extreme drought event. Limnology and Oceanography 62: S131–S146. https://doi.org/10.1002/lno.10586.

    Article  CAS  Google Scholar 

  • Pelicice, F. M. & A. A. Agostinho, 2009. Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biological Invasions 11: 1789–1801. https://doi.org/10.1007/s10530-008-9358-3.

    Article  Google Scholar 

  • Pelicice, F. M., J. D. Latini & A. A. Agostinho, 2015. Fish fauna disassembly after the introduction of a voracious predator: main drivers and the role of the invader’s demography. Hydrobiologia 746: 271–283. https://doi.org/10.1007/s10750-014-1911-8.

    Article  Google Scholar 

  • Pelicice, F. M., V. M. Azevedo-Santos, A. L. H. Esguícero, A. A. Agostinho & M. S. Arcifa, 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology 16: e170150. https://doi.org/10.1590/1982-0224-20170150.

    Article  Google Scholar 

  • Pelicice, F. M., L. S. Damasceno, E. A. Ferreira, C. S. Agostinho & R. Fernandes, 2022. Contrasting continental patterns and drivers of taxonomic and functional turnover among fish assemblages across Brazilian reservoirs. Hydrobiologia 849: 373–384. https://doi.org/10.1007/s10750-020-04388-7.

    Article  Google Scholar 

  • Persson, L., 1993. Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos 68: 12–22.

    Article  Google Scholar 

  • Petry, A. C., L. C. Gomes, P. A. Piana & A. A. Agostinho, 2010. The role of the predatory trahira (Pisces: Erythrinidae) in structuring fish assemblages in lakes of a Neotropical floodplain. Hydrobiologia 651: 115–126. https://doi.org/10.1007/s10750-010-0281-0.

    Article  Google Scholar 

  • Pianka, E. R., 1988. Evolutionary Ecology, Harper and Row, New York:

    Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceeding of the National Academy of Sciences 104: 5732–5737. https://doi.org/10.1073/pnas.0609812104.

    Article  CAS  Google Scholar 

  • Pyšek, P., P. E. Hulme, D. Simberloff, S. Bacher, T. M. Blackburn, J. T. Carlton, W. Dawson, F. Essl, L. C. Foxcroft, P. Genovesi, J. M. Jeschke, I. Kühn, A. W. Liebhold, N. E. Mandrak, L. A. Meyerson, A. Pauchard, J. Pergl, H. E. Roy, H. Seebens, M. van Kleunen, M. Vilà, M. J. Wingfield & D. M. Richardson, 2020. Scientists’ warning on invasive alien species. Biological Reviews 95: 1511–1534. https://doi.org/10.1111/brv.12627.

    Article  PubMed  Google Scholar 

  • Quist, M. C., F. J. Rahel & W. A. Hubert, 2005. Hierarchical faunal filters: an approach to assessing effects of habitat and nonnative species on native fishes. Ecology of Freshwater Fish 14: 24–39. https://doi.org/10.1111/j.1600-0633.2004.00073.x.

    Article  Google Scholar 

  • R Core Team, 2023. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/

  • Reid, A. J., A. K. Carlson, I. F. Creed, E. J. Eliason, P. A. Gell, P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Olden, S. J. Ormerod, J. P. Smol, W. W. Taylor, K. Tockner, J. C. Vermaire, D. Dudgeon & S. J. Cooke, 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873.

    Article  PubMed  Google Scholar 

  • Sala, O. E., F. S. Chapin III., J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global Biodiversity Scenarios for the Year 2100. Science 287: 1770–1774. https://doi.org/10.1126/science.287.5459.1770.

    Article  CAS  PubMed  Google Scholar 

  • Santos, L. N., A. A. Agostinho, C. Alcaraz, et al., 2011a. Artificial macrophytes as fish habitat in a Mediterranean reservoir subjected to seasonal water level disturbances. Aquatic Sciences 73: 43–52. https://doi.org/10.1007/s00027-010-0158-3.

    Article  CAS  Google Scholar 

  • Santos, L. N., E. García-Berthou, A. A. Agostinho & J. D. Latini, 2011b. Fish colonization of artificial reefs in a large Neotropical reservoir: material type and successional changes. Ecological Applications 21: 251–262. https://doi.org/10.1890/09-1283.1.

    Article  PubMed  Google Scholar 

  • Santos, A. F. G. N., E. García-Berthou, C. Hayashi & L. N. Santos, 2013. When habitat complexity increases predation risk: experiments with invasive and neotropical native fishes. Marine and Freshwater Research 64: 752–760. https://doi.org/10.1071/MF12264.

    Article  Google Scholar 

  • Santos, N. C. L., E. García-Berthou, J. D. Dias, T. M. Lopes, I. P. Affonso, W. Severi, L. C. Gomes & A. A. Agostinho, 2018. Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages. Hydrobiologia 819: 77–91. https://doi.org/10.1007/s10750-018-3630-z.

    Article  Google Scholar 

  • Seebens, H., N. Schwartz, P. J. Schupp & B. Blasius, 2016. Predicting the spreadof marine species introduced by global shipping. Proceedings of the National Academy of Sciences 113: 5646–5651. https://doi.org/10.1073/pnas.1524427113.

    Article  CAS  Google Scholar 

  • Simberloff, D., 1988. The contribution of population and community biology to conservation science. Annual Review of Ecology and Systematics 19: 473–511.

    Article  Google Scholar 

  • Simberloff, D. & B. Von Holle, 1999. Positive interactions on nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.

    Article  Google Scholar 

  • Soto, I.A., Balzani, P., Carneiro, L., et al., 2023. Taming the terminological tempest in invasion science. EcoEvoRxiv, https://doi.org/10.32942/X24C79

  • Strubbe, D., O. Beauchard & E. Matthysen, 2014. Niche conservatism among non-native vertebrates in Europe and North America. Ecography 38: 321–329. https://doi.org/10.1111/ecog.00632.

    Article  Google Scholar 

  • Teresa, F. B., L. Casatti & M. V. Cianciaruso, 2015. Functional differentiation between fish assemblages from forested and deforested streams. Neotropical Ichthyology 13(2): 361–370. https://doi.org/10.1590/1982-0224-20130229.

    Article  Google Scholar 

  • Tickner, D., J. J. Opperman, R. Abell, M. Acreman, A. H. Arthington, S. E. Bunn, S. J. Cooke, J. Dalton, W. Darwall, G. Edwards, I. Harrison, K. Hughes, T. Jones, D. Leclère, A. J. Lynch, P. Leonard, M. E. McClain, D. Muruven, J. D. Olden, S. J. Ormerod, J. Robinson, R. J. Tharme, M. Thieme, K. Tockner, M. Wright & L. Young, 2020. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70: 330–342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tupinambás, T. H., M. Callisto & G. B. Santos, 2007. Benthic macroinvertebrate assemblages structure in two headwater streams, south-eastern Brazil. Revista Brasileira De Zoologia 24: 887–897. https://doi.org/10.1590/S0101-81752007000400005.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Villares-Junior, G. A., I. B. Cardone & R. Goitein, 2016. Comparative feeding ecology of four syntopic Hypostomus species in a Brazilian southeastern river. Brazilian Journal of Biology 76: 692–699. https://doi.org/10.1590/1519-6984.00915.

    Article  CAS  Google Scholar 

  • Villéger, S., J. R. Miranda, D. F. Hernández & D. Mouillot, 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20: 1512–1522.

    Article  PubMed  Google Scholar 

  • Wang, Q., K. Feng, X. Du, J. Yuan, J. Liu & Z. Li, 2022. Effects of land use and environmental gradients on the taxonomic and functional diversity of rotifer assemblages in lakes along the Yangtze River, China. Ecological Indicators 142: 109199. https://doi.org/10.1016/j.ecolind.2022.109199.

    Article  Google Scholar 

  • Werner, E. E., J. F. Gilliam & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.

    Article  Google Scholar 

  • Williamshen, B. O., T. A. O’Rear, M. K. Riley, P. B. Moyle & J. R. Durand, 2021. Tidal restoration of a managed wetland in California favors non-native fishes. Restoration Ecology 29: e13392. https://doi.org/10.1111/rec.13392.

    Article  Google Scholar 

  • Willis, S. C., K. O. Winemiller & H. Lopez-Fernandez, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.

    Article  PubMed  Google Scholar 

  • Winemiller, K. O., 2018. Trends in biodiversity: freshwater. In DellaSala, D. A. & M. I. Goldstein (eds), The encyclopedia of the Anthropocene Elsevier, Oxford, UK: 151–161.

    Chapter  Google Scholar 

  • Winemiller, K. O., P. B. McIntyre, L. Castello, et al., 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129. https://doi.org/10.1126/science.aac7082.

    Article  CAS  PubMed  Google Scholar 

  • Ziv, G., E. Baran, S. Nam, I. Rodríguez-Iturbe & S. A. Levin, 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences of the United States of America 109: 5609–5611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary, T. & I. Ostrovsky, 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1: 47–59.

    Article  Google Scholar 

Download references

Funding

This work was funded by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (postdoctoral scholarship to ACSF, E-26/202.243/2019, and research grant to LNS, E-26/202.755/2018), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Research Grant to LNS, ref. 312194/2015-3; 314379/2018-5), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (sandwich doctorate scholarship to ACSF, ref. 88887.127440/2016-00 and visiting professorship to EGB, ref. 88881.068352/2014-01). EGB was also supported by the Spanish Ministry of Science (Projects PID2019-103936 GB-C21 and RED2018‐102571‐T) and the Government of Catalonia (Ref. 2017 SGR 548).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by all authors. Data sampling was performed by ACSF and LNS. Data analysis was performed by ACSF and EGB. The first draft of the manuscript was written by ACSF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana Clara Sampaio Franco.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval (include appropriate approvals or waivers)

Approval was obtained from the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) under the sampling license number #49357.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Handling editor: Fernando Mayer Pelicice

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, A.C.S., Petry, A.C., García-Berthou, E. et al. The effect of shoreline habitats on native and non-native fish species in a set of Neotropical reservoirs. Hydrobiologia (2024). https://doi.org/10.1007/s10750-024-05576-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10750-024-05576-5

Keywords

Navigation