Skip to main content
Log in

Influence of river channel typology on aquatic macroinvertebrate assemblages in tropical streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

River typology is determined by a set of hydrological and geomorphological characteristics, which can determine the structure of aquatic macroinvertebrate communities throughout a watershed. In this study we aim to address the gap of knowledge in the classification of the typology of Neotropical rivers and determine their association with macroinvertebrate assemblages. In total, 138 sites from 107 rivers were sampled in Costa Rica, between years 2015 and 2020. Rivers were classified into V, Tr and U typologies based on the shape of the riverbed, substrates, current velocity and contact with riparian forest. The affinity of aquatic macroinvertebrate taxa to each typology was determined. The results confirmed a clear separation of the aquatic macroinvertebrate assemblages between the typologies, and we observed that some genera showed affinity to a specific typology: Macrobrachium and Caenis are related to U-type; Simulium and Anacroneuria to V-type, while Americabaetis and Thraulodes to Tr-type. This separation was related to in-stream habitat supply and substrate characteristics, yet there was an overlap of shared taxa between the V and Tr-type, and between the Tr and U-type. Our study linked 238 taxa to three river typologies, highlighting the importance of river hydrogeomorphology as a robust factor structuring the macroinvertebrate assemblages in tropical streams. River channel typology should be considered a relevant explanatory variable when studying macroinvertebrate responses, not only within ecological studies, but also for biomonitoring and risk assessment related to land use changes, pollution, or watershed management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Agra, J., R. Ligeiro, D. Rodrigues-Macedo, R. Mason- Huges & M. Castillo, 2019. Ecoregions and stream types help us understand ecological variability in Neotropical reference streams. Marine and Freshwater Research 70: 594–602. https://doi.org/10.1071/MF18309.

    Article  Google Scholar 

  • Alabyan, A. & R. Chalov, 1998. Types of river channel patterns and their natural controls. Earth Surface Processes and Landforms 23: 467–474.

    Article  ADS  Google Scholar 

  • Allan, D. & M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Chapman and Hall, New York.

    Book  Google Scholar 

  • Altermatt, F., M. Seymour & N. Martinez, 2013. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. Journal of Biogeography 40: 2249–2260.

    Article  Google Scholar 

  • Bailey, P., 1986. The feeding behavior of a sit-and-wait predator, Ranatra dispar, (Heteroptera: Nepidae): description of behavioural components of prey capture, and the effect of food deprivation on predator arousal and capture dynamics. Behavior 97: 66–93.

    Article  Google Scholar 

  • Bancé, V., O. Adama, I. Kaboré, I. Ouédraogo, K. Mano, P. Weesie & G. Kabré, 2021. Influence of micro-habitats on the distribution of macroinvertebrates in Burkina Faso (West Africa). International Journal of Aquatic Biology 9(3): 177–186. https://doi.org/10.22034/ijab.v9i3.976.

    Article  Google Scholar 

  • Bauer, R. & J. Delahoussaye, 2008. Life history migrations of the Amphidromous River Shrimp Macrobrachium ohione from a Continental Large River System. Journal of Crustacean Biology 28: 622–632. https://doi.org/10.1651/08-2977.1.

    Article  Google Scholar 

  • Bravard, J. & F. Petit, 2009. Geomorphology of streams and rivers. Encyclopedia of Inland Waters. https://doi.org/10.1016/b978-012370626-3.00043-0.

    Article  Google Scholar 

  • Burgazzi, G., P. Vezza, G. Negro, L. Astegiano, R. Pellicanó, B. Pinna, P. Viaroli & A. Laini, 2021. Effect of microhabitats, mesohabitats and spatial position on macroinvertebrate communities of a braided river. Journal of Ecohydraulics 6(2): 95–104. https://doi.org/10.1080/24705357.2021.1938254.

    Article  Google Scholar 

  • Carrara, F., F. Altermatt, I. Rodríguez-Iturbe & A. Rinaldo, 2012. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences of the United States of America 109: 5761–5766.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro, D., P. da Silva, R. Solar & M. Callisto, 2020. Unveiling patterns of taxonomic and functional diversities of stream insects across four spatial scales in the neotropical savanna. Ecological Indicators 118: 106769–106769. https://doi.org/10.1016/j.ecolind.2020.106769.

    Article  Google Scholar 

  • Contreras-Ramos, A. & S. Harris, 1998. The immature stages of Platyneuromus (Corydalidae), with a key to the genera of Larval Megaloptera of Mexico. Journal of the North American Benthological Society 17: 489–517.

    Article  Google Scholar 

  • Cover, M. & V. Resh, 2022. Global diversity of dobsonflies, fishflies, and alderflies (Megaloptera; Insecta) and spongillaflies, nevrorthids, and osmylids (Neuroptera; Insecta) in freshwater. Hydrobiology 595: 409–417. https://doi.org/10.1007/978-1-4020-8259-7_42.

    Article  Google Scholar 

  • Cummins, K. W., 1962. An evaluation of some techniques for the collection andanalysis of benthic samples with special emphasis on lotic waters. American Midland Naturalist 67: 477–504.

    Article  Google Scholar 

  • D'Ambrosio, J., L. Williams, J. Witter & A. Ward, 2009. Effects of geomorphology habitat and spatial location on fish assemblages in a watershed in Ohio USA. Environmental Monitoring and Assessment 148(1–4): 325–341. https://doi.org/10.1007/s10661-008-0163-3

    Article  CAS  PubMed  Google Scholar 

  • Dou, B., Y. Hosseini, C. Lee, C. Rosenberg & N. Wu, 2018. The relationship between stream discharge and dissolved oxygen levels at Canyon Creek, and implications towards Salmon performance. The Expedition 8: 1–20.

    Google Scholar 

  • Duan, X., Z. Wang & S. Tian, 2008. Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China 2: 122–128. https://doi.org/10.1007/s11783-008-0023-y.

    Article  Google Scholar 

  • Dubey, K., A. K. Chaubey, V. Mahale & S. Karisiddaiah, 2019. Buried channels provide keys to infer quaternary stratigraphic and paleo-environmental changes: a case study from the west coast of India. Geoscience Frontiers 10(4): 1577–1595. https://doi.org/10.1016/j.gsf.2018.09.016.

    Article  Google Scholar 

  • Flowers, W. & C. De la Rosa, 2010. Ephemeroptera. In: Springer, M., Ramírez, A. & Hanson, P. (eds), Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical 58: 63–93.

  • Fuster, R., C. Escobar, G. Lillo & A. de la Fuente, 2014. Construction of a typology system for rivers in Chile based on the European Water Framework Directive (WFD). Environmental Earth Sciences 73(9): 5255–5268. https://doi.org/10.1007/s12665-014-3772-x.

    Article  ADS  CAS  Google Scholar 

  • Gil-Azevedo, L. & D. Da Santos, 2016. Family Blephariceridae. Zootaxa 4122: 182–186.

    Article  PubMed  Google Scholar 

  • Gordon, N., T. McMahon & B. Finlayson, 2004. Stream Hydrology an Introduction for Ecologists. Wiley, West Sussex.

    Google Scholar 

  • Hamada, N., J. Oliveria, M. Pepinelli & L. Ribeiro, 2014. Ordem Diptera. En: Hamada, N., J. Nessimian & R. Barbosa (eds), Insetos Aquáticos na Amazonia brasileira: taxonomia, biologia, e ecologia. Instituto Nacional de Pesquisas da Amazonia, Brasil.

  • Hanh, T., M. Eurie, P. Boets, K. Lock, M. Damanik, N. Suhareva, G. C. Van der EveraertHeyden, L. Dominguez-Granada, T. Thi & P. Goethals, 2018. Threshold responses of macroinvertebrate communities to stream velocity in relation to hydropower dam: a case study from the Guayas River Basin (Ecuador). Water 10: 1–17.

    Google Scholar 

  • Hawkins, C., R. Norris, H. Gerristen, R. Hughs, S. Jackson, R. Johnson & R. Stevenson, 2000. Evaluation of the use of landscape classification for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society 19(3): 541–556.

    Article  Google Scholar 

  • Hill, M., J. Heino, I. Thornhill, D. B. Ryves & P. J. Wood, 2017. Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos 126: 1575–1585. https://doi.org/10.1111/oik.04266.

    Article  ADS  Google Scholar 

  • Hill, M., J. Biggs, I. Thornhill, R. A. Briers, M. Ledger, D. Gledhill, P. Wood & C. Hassall, 2018. Community heterogeneity of aquatic macroinvertebrates in urban ponds at a multi-city scale. Landscape Ecology 33: 389–405. https://doi.org/10.1007/s10980-018-0608-1.

    Article  Google Scholar 

  • Holyoak, M., M. Leibold & R. Holt, 2005. Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago.

    Google Scholar 

  • Hughes, R. M., D. Larsen & J. Omernik, 1986. Regional reference sites: a method for assessing stream potentials. Environmental Management 10(5): 629–635. https://doi.org/10.1007/bf01866767.

    Article  ADS  CAS  Google Scholar 

  • Jacobus, L. M., C. R. Macadam & M. Sartori, 2019. Mayflies (Ephemeroptera) and their contributions to ecosystem eervices. Insects 10: 170. https://doi.org/10.3390/insects10060170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassambara, A. & F. Mundt, 2020. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra

  • Lamouroux, N., S. Dolédec & S. Gayraud, 2004. Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society 23: 449–466.

    Article  Google Scholar 

  • Le, S., J. Josse & F. Husson, 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25: 1–18. https://doi.org/10.18637/jss.v025.i01.

    Article  Google Scholar 

  • Leipelt, K. & F. Suhling, 2001. Habitat selection of larval Gomphus graslinii and Oxygastra curtisii (Odonata: Gomphidae, Corduliidae). International Journal of Odonatology 4: 23–34. https://doi.org/10.1080/13887890.2001.9748155.

    Article  Google Scholar 

  • Leopold, L., G. Wolman & J. Miller, 1992. Fluvial Processes in Geomorphology. Dover Publication, New York.

    Google Scholar 

  • Ligeiro, R., R. M. Hughes, P. R. Kaufmann, D. R. Macedo, K. R. Firmiano, W. R. Ferreira, D. Oliveira, A. Melo & M. Callisto, 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25: 45–57. https://doi.org/10.1016/j.ecolind.2012.09.004.

    Article  Google Scholar 

  • López-González, E. & R. Hidalgo, 2010. Non-Metric Multidimensional Scaling. An Example with R Using SMACOF Algorithm. Estudios sobre educación 88: 9–35.

    Google Scholar 

  • Maasri, A., J. H. Thorp, N. Kotlinski, J. Kiesel, B. Erdenee & S. C. Jähnig, 2021. Variation in macroinvertebrate community structure of functional process zones along the river continuum: New elements for the interpretation of the river ecosystem synthesis. River Research and Applications 37: 665–674. https://doi.org/10.1002/rra.3784.

    Article  Google Scholar 

  • Maddock, I., A. Harby, P. Kemp & P. Wood, 2013. Ecohydraulics : an integrated approach. JohnWiley & Sons, Oxford, UK.

  • Manzo, V. & M. Archangelsky, 2008. A key to the known larvae of South American Elmidae (Coleoptera: Byrrhoidea), with a description of the mature larva of Macrelmis saltensis, Manzo. Annales de Limnologie - International Journal of Limnology 44: 63–74. https://doi.org/10.1051/limn:2008023.

    Article  Google Scholar 

  • Marçal, M., G. Brierley & R. Lima, 2017. Using geomorphic understanding of catchment-scale process relationships to support the management of river futures: Macaé Basin, Brazil. Applied Geography 84: 23–41. https://doi.org/10.1016/j.apgeog.2017.04.008.

    Article  Google Scholar 

  • Martins, I., D. Rodrigues-Macedo, R. Hughes & M. Callisto, 2021. Major risks to aquatic biotic condition in a Neotropical Savanna River basin. River Research and Applications 37(6): 858–868. https://doi.org/10.1002/rra.3801

    Article  Google Scholar 

  • Mathers, K. L., S. Rice & P. Wood, 2017. Temporal effects of enhanced fine sediment loading on macroinvertebrate community structure and functional traits. Science of the Total Environment 599–600: 513–522. https://doi.org/10.1016/j.scitotenv.2017.04.096.

    Article  ADS  CAS  PubMed  Google Scholar 

  • McCord, S. & B. Kuhl, 2013. Macroinvertebrate community structure and its seasonal variation in the Upper Mississippi River, USA: a case study. Journal of Freshwater Ecology 28(1): 63–78.

    Article  Google Scholar 

  • Meissner, A., M. Carr, I. Phillips & K. Lindenschmidt, 2016. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 1: Genus-Level Relationships with Geomorphic Typologies. Water 8(2): 42. https://doi.org/10.3390/w8020042.

    Article  Google Scholar 

  • Mercado-Garcia, D., E. Beeckman, J. Van Butsel, N. Deza Arroyo, M. Sanchez Peña, M. Forio, K. De Schamphelaere, G. Wyseure & P. Goethals, 2022. Freshwater macroinvertebrate traits assessment as complementary to taxonomic information for mining impact detection in the northern Peruvian Andes. Diversity and Distributions 28(8): 1582–1596. https://doi.org/10.1111/ddi.13538.

    Article  Google Scholar 

  • Mesa, L., 2012. Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology 55(3): 403–410.

    Article  Google Scholar 

  • Milesi, S., S. Dolédec & A. Melo, 2016. Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshwater Science 35(4): 1321–1329.

    Article  Google Scholar 

  • Molineri, C., 2010. A cladistic revision of Tortopus Needham & Murphy with description of the new genus Tortopsis (Ephemeroptera: Polymitarcyidae). Zootaxa 2481: 1–36. https://doi.org/10.11646/zootaxa.2481.1.1.

    Article  Google Scholar 

  • Nakano, D., & F. Nakamura, 2007. The significance of meandering channel morphology on the diversity and abundance of macroinvertebrates in a lowland river in Japan. Aquatic Conservation: Marine and Freshwater Ecosystems 18(5): 780–798. https://doi.org/10.1002/aqc.885

    Article  ADS  Google Scholar 

  • Oksanen, J., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. Minchin, R. O'Hara, G. Simpson, P. Solymos, H. Stevens, E. Szoecs & H. Wagner, 2020. Vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan

  • Pero, E., S. Georgieff, M. Gultemirian, F. Romero, G. Hankel & E. Domínguez, 2020. Ecoregions, climate, topography, physicochemical, or a combination of all: which criteria are the best to define river types based on abiotic variables and macroinvertebrates in neotropical rivers? Science of the Total Environment 738: 140303. https://doi.org/10.1016/j.scitotenv.2020.140303.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Phillips, C., C. Masteller, L. Slater, K. Dunne, S. Francalanci, S. Lanzoni, D. Merritts, E. Lajeunesse & D. Jerolmack, 2022. Threshold constraints on the size, shape and stability of alluvial rivers. Nature Reviews Earth & Environment 3(6): 406–419. https://doi.org/10.1038/s43017-022-00282-z.

    Article  ADS  Google Scholar 

  • Pierre, J. I. & K. E. Kovalenko, 2014. Effect of habitat complexity attributes on species richness. Ecosphere 5: 22. https://doi.org/10.1890/ES13-00323.1.

    Article  Google Scholar 

  • Principe, R. E., J. A. Márquez & L. Cibils-Martina, 2019. Distribution and habitat preference of Ephemeroptera and Trichoptera in subtropical mountain streams: implications for monitoring and conservation. Anais Da Academia Brasileira de Ciencias. https://doi.org/10.1590/0001-3765201920180692.

    Article  PubMed  Google Scholar 

  • Quesada-Alvarado, F., G. Umaña-Villalobos, M. Springer & J. Picado-Barboza, 2020. Variación estacional y características fisicoquímicas e hidrológicas que influyen en los macroinvertebrados acuáticos, en un río tropical. Revista de Biología Tropical 68: 54–67. https://doi.org/10.15517/rbt.v68is2.44332.

    Article  Google Scholar 

  • Quesada-Alvarado, F., G. Umaña-Villalobos, M. Springer & J. Picado-Barboza, 2020. Classification of aquatic macroinvertebrates in flow categories for the adjustment of the LIFE Index to Costa Rican rivers. Ecohydrology & Hydrobiology 21: 368–376. https://doi.org/10.1016/j.ecohyd.2020.08.005.

    Article  Google Scholar 

  • R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Ramírez, A., 2010. Odonata. En: Springer, M., Ramírez, A. & Hanson, P. (Eds). Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical 58: 97–136. https://doi.org/10.15517/rbt.v58i4.

  • Ribeiro, C., V. Lopes & G. Bertini, 2020. Abundance and spatio-temporal distribution of the amphidromous shrimp Macrobrachium olfersii (Caridea: Palaemonidae) along the Ribeira de Iguape River (São Paulo, Brazil). Nauplius 28: e2020017. https://doi.org/10.1590/2358-2936e2020017.

    Article  Google Scholar 

  • Roberts, D., 2019. Labdsv: Ordination and Multivariate Analysis for Ecology. R package version 2.0-1. https://CRAN.R-project.org/package=labdsv

  • Roldán, G., 1998. Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Universidad de Antioquía, Colombia. https://docer.com.ar/doc/11ns1n

  • Runck, C. & W. Blinn, 1990. Population dynamics and secondary production by Ranatra montezuma (Heteroptera:Nepidae). Journal of the North American Benthological Society 9: 262–270. https://doi.org/10.2307/1467589.

    Article  Google Scholar 

  • Silva, D., R. Ligeiro, R. Hughes & M. Callisto, 2016. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-016-5326-z.

    Article  PubMed  Google Scholar 

  • Slowikowski, K., 2021. ggrepel: Automatically Position Non-Overlapping Text Labels with 'ggplot2'. R package version 0.9.1. https://CRAN.R-project.org/package=ggrepel

  • Springer, M., 2010. Trichoptera. En: Springer, M., Ramírez, A. & Hanson, P. (eds). Macroinvertebrados de agua dulce de Costa Rica I. Revista de Biología Tropical 58: 63–93. https://doi.org/10.15517/rbt.v58i4

  • Sullivan, S., M. Watzin & W. Hession, 2004. Understanding stream geomorphic state in relation to ecological integrity: evidence using habitat assessments and macroinvertebrates. Environ Manage. 34(5): 669–683. https://doi.org/10.1007/s00267-004-4032-8.

    Article  PubMed  Google Scholar 

  • Tonelli, M., J. Verdú & M. Zunino, 2017. Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy. PeerJ 5: e2780–e2780. https://doi.org/10.7717/peerj.2780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205. https://doi.org/10.1046/j.1365-2427.2000.00535.x.

    Article  Google Scholar 

  • van Dijk, W. M., W. I. van de Lageweg & M. G. Kleinhans, 2013. Formation of a cohesive floodplain in a dynamic experimental meandering river. Earth Surface Processes and Landforms 38: 1550–1565. https://doi.org/10.1002/esp.3400.

    Article  ADS  Google Scholar 

  • Vannote, R. R., G. Minshall, K. Cummins, J. Sedell & C. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Walters, D., D. Leigh, M. Freeman, B. Freeman & C. Pringle, 2003. Geomorphology and fish assemblages in a Piedmont river basin, U.S.A. Freshwater Biology 48(11): 1950–1970. https://doi.org/10.1046/j.1365-2427.2003.01137.x

    Article  Google Scholar 

  • Weigel, B., L. Wang, P. Rasmussen, J. Butcher, P. Stewart, T. Simon & M. Wiley, 2003. Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern Lakes and Forest ecoregion, U.S.A. Freshwater Biology 48(8): 1440–1461. https://doi.org/10.1046/j.1365-2427.2003.01076.x

    Article  Google Scholar 

  • Whitbread, K., J. Jansen, P. Bishop & M. Attal, 2015. Substrate, sediment, and slope controls on bedrock channel geometry in postglacial streams. Journal of Geophysical Research: Earth Surface 120: 779–798. https://doi.org/10.1002/2014jf003295.

    Article  ADS  Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.

    Book  Google Scholar 

  • Wickham, H., R. François, L. Henry & K. Müller, 2021. dplyr: A Grammar of Data Manipulation. R package version 1.0.5. https://CRAN.R-project.org/package=dplyr

  • Yan, Q., T. Iwasaki, A. J. Stumpf, P. Belmont, G. Parker & P. Kumar, 2017. Hydrogeomorphological differentiation between floodplains and terraces. Earth Surface Processes and Landforms 43(1): 218–228. https://doi.org/10.1002/esp.4234.

    Article  ADS  Google Scholar 

  • Zhao, N., Z. Wang, B. Pan, M. Xu & Z. Li, 2014. Macroinvertebrate assemblages in mountain streams with different streambed stability. River Research and Applications 31(7): 825–833. https://doi.org/10.1002/rra.2775.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the water directorate of MINAE, which financed the sampling for six years. Lidia Avilés, Sarita Poltronieri, Beatriz Naranjo and Francisco Bravo who participated in the aquatic macroinvertebrate collection surveys and identification. Denis Salas-González for mapping the sampling sites. Jennifer Crowe and Aura M. Alonso-Rodríguez for reviewing the use of the english language.

Funding

This work was supported by Dirección de Agua del Ministerio de Ambiente y Energía (MINAE), Contract 0432019001200051-00, and Universidad Nacional, Costa Rica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Quesada-Alvarado.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

The manuscript did not require approval as it did not include human subjects. The authors declare that this manuscript complies with the Publishing Ethics for this journal.

Additional information

Handling editors: Frank Onderi Mases & Sidinei M. Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 73 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quesada-Alvarado, F., Gutiérrez-Fonseca, P.E., Solano-Ulate, D. et al. Influence of river channel typology on aquatic macroinvertebrate assemblages in tropical streams. Hydrobiologia 851, 1825–1840 (2024). https://doi.org/10.1007/s10750-023-05419-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05419-9

Keywords

Navigation