Skip to main content

Advertisement

Log in

Holocene limnological changes in saline and freshwater lakes, Lower Nhecolândia, Pantanal, Brazil

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 13 December 2023

This article has been updated

Abstract

The lower Nhecolândia region, in the south of the Pantanal, contains thousands of shallow freshwater and saline-alkaline lakes isolated by sandy ridges. To understand the paleoenvironment, sediment cores from B02SR (freshwater) and 07SR (saline-alkaline) lakes were analyzed, employing a combination of 14C dating, microfossils, geochemical, elemental, and isotopic analyses. The 07SR core recovered Late Pleistocene sediments (~ 23,440 cal yrs BP), and the B02SR core Middle Holocene sediments (~ 6080 cal yrs BP). The base of the cores consists of bedded sands with no organic matter, sponge spicules, or diatoms. Phytoliths suggest the presence of cerrado vegetation with seasonal floods, suggestive of a periodically inundated distal floodplain. We interpret that the two lakes sustain perennial alkaline geochemical conditions between ~ 3080 and ~ 1330 cal yrs BP. The Lake B02SR transitioned to slightly acidic waters with low electrical conductivity from ~ 1330 cal yrs BP to the present, probably associated with a connection to ephemeral shallow or perennial channels. Lake 07SR maintained consistent water chemistry throughout the record, suggesting that an isolated drainage pattern remained unchanged creating persistent alkaline conditions. Our results suggest that lake chemical changes were spatially variable in lower Nhecolândia in the Holocene, which has implications for ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  • Absy, M., 1975. Polen e esporos do Quaternário de Santos (Brasil). Hoehnea 5: 1–26.

    Google Scholar 

  • Assine, M., 2003. Sedimentação na Bacia do Pantanal Mato-Grossense, Centro-Oeste do Brasil.

  • Assine, M. L. & P. C. Soares, 2004. Quaternary of the Pantanal, west-central Brazil. Quaternary International 114(1): 23–34. https://doi.org/10.1016/S1040-6182(03)00039-9.

    Article  ADS  Google Scholar 

  • Barbiero, L., J. P. de Queiroz Neto, G. Ciornei, A. Y. Sakamoto, B. Capellari, E. Fernandes & V. Valles, 2002. Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes. Wetlands 22(3): 528–540. https://doi.org/10.1672/0277-5212(2002)022[0528:GOWAGW]2.0.CO;2.

    Article  Google Scholar 

  • Barbiero, L., M. Siqueira Neto, R. R. Braz, J. B. D. Carmo, A. T. Rezende Filho, E. Mazzi, F. A. Fernandes, S. R. Damatto & P. B. D. Camargo, 2017. Biogeochemical diversity and hot moments of GHG emissions from shallow alkaline lakes in the Pantanal of Nhecolândia, Brazil. Biogeosciences Discuss 2017: 1–26. https://doi.org/10.5194/bg-2017-108.

    Article  Google Scholar 

  • Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Smol, J. P., H. J. B. Birks, W. M. Last, R. S. Bradley & K. Alverson (eds) Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators. Springer Netherlands, Dordrecht, 155–202. https://doi.org/10.1007/0-306-47668-1_8

  • Becker, B. F., S. A. F. da Silva-Caminha, R. L. Guerreiro, E. J. de Oliveira, C. D’Apolito & M. L. Assine, 2018. Late Holocene palynology of a saline lake in the Pantanal of Nhecolândia. Brazil. Palynology 42(4): 457–465. https://doi.org/10.1080/01916122.2017.1386843.

    Article  Google Scholar 

  • Bergier, I., A. Krusche & F. Guérin, 2016. Alkaline Lake Dynamics in the Nhecolândia Landscape. In Bergier, I. & M. L. Assine (eds) Dynamics of the Pantanal Wetland in South America. Springer International Publishing, Cham, 145–161. https://doi.org/10.1007/698_2014_327

  • Bertaux, J., F. Sondag, R. Santos, F. Soubiès, C. Causse, V. Plagnes, F. Le Cornec & A. Seidel, 2002. Paleoclimatic record of speleothems in a tropical region: study of laminated sequences from a Holocene stalagmite in Central-West Brazil. Quaternary International 89(1): 3–16. https://doi.org/10.1016/S1040-6182(01)00077-5.

    Article  ADS  Google Scholar 

  • Bezerra, M. A., A. A. Mozeto, P. E. Oliveira, C. Volkmer-Ribeiro, V. V. Rodrigues & R. Aravena, 2019. Late Pleistocene/Holocene environmental history of the southern Brazilian Pantanal wetlands. Oecologia Australis 23(04): 712–729.

    Article  Google Scholar 

  • Blaauw, M. & J. A. Christen, 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457–474, 18. https://doi.org/10.1214/11-BA618

  • Bremond, L., A. Alexandre, C. Hély & G. Joel, 2005. A phytolith index as a proxy of tree cover density in tropical areas: Calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon. Global and Planetary Change 45: 277–293. https://doi.org/10.1016/j.gloplacha.2004.09.002.

    Article  ADS  Google Scholar 

  • Buso Junior, A. A., L. C. Ruiz Pessenda, P. E. de Oliveira, P. C. Fonseca Giannini, M. C. Lisboa Cohen, C. Volkmer-Ribeiro, S. M. B. de Oliveira, D. De Fátima Rossetti, F. L. Lorente, M. A. Borotti Filho, J. A. Schiavo, J. A. Bendassolli, M. C. França, J. T. Felix Guimarães & G. S. Siqueira, 2013. Late Pleistocene and Holocene Vegetation, Climate Dynamics, and Amazonian Taxa in the Atlantic Forest, Linhares. SE Brazil. Radiocarbon 55(3): 1747–1762. https://doi.org/10.1017/S0033822200048669.

    Article  Google Scholar 

  • Collinvaux, P., P. Oliveira & J. E. Moreno, 1999. Amazon: Pollen Manual and Atlas: Pollen Manual and Atlas.

  • Company, M. C., 1975. Munsell soil color charts. Revised edn (Macbeth Division of Kollmorgen, 1994).

  • Costa, M., K. H. Telmer, T. L. Evans, T. I. R. Almeida & M. T. Diakun, 2015. The lakes of the Pantanal: inventory, distribution, geochemistry, and surrounding landscape. Wetlands Ecology and Management 23(1): 19–39. https://doi.org/10.1007/s11273-014-9401-3.

    Article  Google Scholar 

  • de Souza Santos, K. R., A. C. R. Rocha & C. L. Sant’Anna, 2012. Diatoms from shallow lakes in the Pantanal of Nhecolândia. Brazilian Wetland. Oecologia Australis 16(4): 756–769.

    Article  Google Scholar 

  • Faegri, K., P. E. Kaland & K. Krzywinski, 1989. Textbook of pollen analysis. John Wiley & Sons Ltd.

  • Fornace, K. L., B. S. Whitney, V. Galy, K. A. Hughen & F. E. Mayle, 2016. Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes. Earth and Planetary Science Letters 438: 75–85. https://doi.org/10.1016/j.epsl.2016.01.007.

    Article  ADS  CAS  Google Scholar 

  • Fredlund, G. G. & L. T. Tieszen, 1994. Modern Phytolith Assemblages from the North American Great Plains. Journal of Biogeography 21(3): 321–335. https://doi.org/10.2307/2845533.

    Article  Google Scholar 

  • Furian, S., E. R. C. Martins, T. M. Parizotto, A. T. Rezende-Filho, R. L. Victoria & L. Barbiero, 2013. Chemical diversity and spatial variability in myriad lakes in Nhecolândia in the Pantanal wetlands of Brazil. Limnology and Oceanography 58(6): 2249–2261. https://doi.org/10.4319/lo.2013.58.6.2249.

    Article  ADS  CAS  Google Scholar 

  • Furquim, S., Robert Graham, L. Barbiero, Q. Laurent, J. de Neto, Queiroz Neto & P. Vidal-Torrado, 2010. Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland, Brazil. Geoderma (amsterdam) 154: 518–528. https://doi.org/10.1016/j.geoderma.2009.03.014.

    Article  ADS  CAS  Google Scholar 

  • Girard, P., I. Fantin-Cruz, S. M. L. de Oliveira & S. K. Hamilton, 2010. Small-scale spatial variation of inundation dynamics in a floodplain of the Pantanal (Brazil). Hydrobiologia 638(1): 223–233. https://doi.org/10.1007/s10750-009-0046-9.

    Article  Google Scholar 

  • Grimm, E. C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13(1): 13–35. https://doi.org/10.1016/0098-3004(87)90022-7.

    Article  ADS  MathSciNet  Google Scholar 

  • Guerreiro, R. L., M. M. McGlue, J. R. Stone, I. Bergier, M. Parolin, S. A. F. da Silva Caminha, L. V. Warren & M. L. Assine, 2018. Paleoecology explains Holocene chemical changes in lakes of the Nhecolândia (Pantanal-Brazil). Hydrobiologia 815(1): 1–19. https://doi.org/10.1007/s10750-017-3429-3.

    Article  CAS  Google Scholar 

  • Hammer, O., D. Harper & P. Ryan, 2001. PAST: paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hogg, A. G., T. J. Heaton, Q. Hua, J. G. Palmer, C. S. M. Turney, J. Southon, A. Bayliss, P. G. Blackwell, G. Boswijk, C. Bronk Ramsey, C. Pearson, F. Petchey, P. Reimer, R. Reimer & L. Wacker, 2020. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon 62(4): 759–778. https://doi.org/10.1017/RDC.2020.59.

    Article  CAS  Google Scholar 

  • Hua, Q., J. C. Turnbull, G. M. Santos, A. Z. Rakowski, S. Ancapichún, R. De Pol-Holz, S. Hammer, S. J. Lehman, I. Levin, J. B. Miller, J. G. Palmer & C. S. M. Turney, 2022. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64(4): 723–745. https://doi.org/10.1017/RDC.2021.95.

    Article  CAS  Google Scholar 

  • ICPT, I. C. f. P. T., 2019. International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany 124(2):189–199. https://doi.org/10.1093/aob/mcz064

  • Junk, W. J. & C. N. d. Cunha, 2005. Pantanal: a large South American wetland at a crossroads. Ecological Engineering 24(4):391-401. https://doi.org/10.1016/j.ecoleng.2004.11.012

  • Keddy, P. A., L. H. Fraser, A. I. Solomeshch, W. J. Junk, D. R. Campbell, M. T. K. Arroyo & C. J. R. Alho, 2009. Wet and Wonderful: the World’s Largest Wetlands Are Conservation Priorities. BioScience 59(1): 39–51. https://doi.org/10.1525/bio.2009.59.1.8.

    Article  Google Scholar 

  • Lacerda Filho, J. V. C. D. B., R.S.; Rodrigues Valente, C.; Cavalcante De Oliveira, C.; Silva, M.G.; Moreton, C.C.; Martins, E.G.; Lopes, R.C.; Muniz Lima, T.; Larizzatti, J.H.; Valente, C.R., 2006. Geologia e recursos minerais do estado de Mato Grosso do Sul: texto explicativo dos mapas geológico e de recursos minerais do estado de Mato Grosso do Sul. Campo Grande: CPRM. Escala 1:1.000.000 Programa Geologia do Brasil - PGB.

  • Lo, E. L., M. M. McGlue, A. Silva, I. Bergier, K. M. Yeager, H. de Azevedo Macedo, M. Swallom & M. L. Assine, 2019. Fluvio-lacustrine sedimentary processes and landforms on the distal Paraguay fluvial megafan (Brazil). Geomorphology 342: 163–175. https://doi.org/10.1016/j.geomorph.2019.06.001.

    Article  ADS  Google Scholar 

  • Lorente, F. L., L. C. Pessenda, F. Oboh-Ikuenobe, A. A. Buso Jr., M. C. Cohen, K. E. Meyer, P. C. Giannini, P. E. de Oliveira, Rossetti D. de Fátima, M. A. Borotti Filho & M. C. França, 2014. Palynofacies and stable C and N isotopes of Holocene sediments from Lake Macuco (Linhares, Espírito Santo, southeastern Brazil): depositional settings and palaeoenvironmental evolution. Palaeogeography, palaeoclimatology, palaeoecology 415: 69–82. https://doi.org/10.1016/j.palaeo.2013.12.004.

    Article  ADS  Google Scholar 

  • Malone, C. F., K. R. Santos & C. L. Sant’Anna, 2012. Algas E cianobactérias de ambientes extremos do Pantanal BrasileirO. Oecologia Australis 16: 745–755. https://doi.org/10.4257/oeco.2012.1604.02.

    Article  Google Scholar 

  • McGlue, M. M., R. L. Guerreiro, I. Bergier, A. Silva, F. N. Pupim, V. Oberc & M. L. Assine, 2017. Holocene stratigraphic evolution of saline lakes in Nhecolândia, southern Pantanal wetlands (Brazil). Quaternary Research 88(3): 472–490. https://doi.org/10.1017/qua.2017.57.

    Article  ADS  CAS  Google Scholar 

  • McGlue, M. M., A. Silva, M. L. Assine, J. C. Stevaux & F. d. N. Pupim, 2016. Paleolimnology in the Pantanal: Using Lake Sediments to Track Quaternary Environmental Change in the World’s Largest Tropical Wetland. In Bergier, I. & M. L. Assine (eds) Dynamics of the Pantanal Wetland in South America. Springer International Publishing, Cham, 51–81. https://doi.org/10.1007/698_2015_350

  • McGlue, M. M., A. Silva, H. Zani, F. A. Corradini, M. Parolin, E. J. Abel, A. S. Cohen, M. L. Assine, G. S. Ellis & M. A. Trees, 2012. Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil). Quaternary Research 78(2): 285–294. https://doi.org/10.1016/j.yqres.2012.05.015.

    Article  ADS  Google Scholar 

  • Merdy, P., M. Gamrani, C. R. Montes, A. T. Rezende Filho, L. Barbiero, D. A. Ishida, A. R. C. Silva, A. J. Melfi & Y. Lucas, 2022. Processes and rates of formation defined by modelling in alkaline to acidic soil systems in Brazilian Pantanal wetland. CATENA 210: 105876. https://doi.org/10.1016/j.catena.2021.105876.

    Article  CAS  Google Scholar 

  • Merino, E. R. & M. L. Assine, 2020. Hidden in plain sight: How finding a lake in the Brazilian Pantanal improves understanding of wetland hydrogeomorphology. Earth Surface Processes and Landforms 45(2): 440–458. https://doi.org/10.1002/esp.4745.

    Article  ADS  Google Scholar 

  • Metcalfe, Sarah E., Bronwen S. Whitney, Katharine A. Fitzpatrick, Francis E. Mayle, Neil J. Loader, F. Alayne Street-Perrott & David G. Mann, 2014. Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25 000 years. Journal of Quaternary Science 29(3): 289–300. https://doi.org/10.1002/jqs.2702.

    Article  ADS  Google Scholar 

  • Metzeltin, D. & H. Lange-Bertalot, 2007. Tropical diatoms of South America II. Special remarks on biogeographic disjunction. Iconogr Diatomol 18: 1–877.

    Google Scholar 

  • Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114(3): 289–302. https://doi.org/10.1016/0009-2541(94)90059-0.

    Article  ADS  CAS  Google Scholar 

  • Millspaugh, S. H. & C. Whitlock, 1995. A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA. The Holocene 5(3): 283–292.

    Article  ADS  Google Scholar 

  • Morales, E., C. Wetzel, S. Rivera, M. H. Novais, L. Hoffmann & L. Ector, 2014. Craticula strelnikoviana sp. nov. and Craticula guaykuruorum sp. nov. (Bacillariophyta) from South American saline lakes. Nova Hedwigia 143: 223–237. https://doi.org/10.1127/1438-9134/2014/010.

    Article  Google Scholar 

  • Mourão, G., I. Ishii & Z. Campos, 1988. Alguns fatores limnológicos relacionados com a ictiofauna de baías e salinas do Pantanal da Nhecolândia, MS, Brasil. Acta Limnologica Brasiliensia 2: 181–198.

    Google Scholar 

  • Novello, V. F., F. W. Cruz, M. M. McGlue, C. I. Wong, B. M. Ward, M. Vuille, R. A. Santos, P. Jaqueto, L. C. Pessenda & T. Atorre, 2019. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth and Planetary Science Letters 524: 115717. https://doi.org/10.1016/j.epsl.2019.115717.

    Article  CAS  Google Scholar 

  • Novello, V. F., M. Vuille, F. W. Cruz, N. M. Stríkis, M. S. De Paula, R. L. Edwards, H. Cheng, I. Karmann, P. F. Jaqueto & R. I. Trindade, 2016. Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites. Scientific Reports 6(1): 1–8. https://doi.org/10.1038/srep24762.

    Article  CAS  Google Scholar 

  • Pessenda, L. C. R., P. E. De Oliveira, M. Mofatto, V. B. de Medeiros, R. J. Francischetti Garcia, R. Aravena, J. A. Bendassoli, A. Zuniga Leite, A. R. Saad & M. Lincoln Etchebehere, 2009. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quaternary Research 71(3): 437–452. https://doi.org/10.1016/j.yqres.2009.01.008.

    Article  ADS  CAS  Google Scholar 

  • Pinheiro, U. & L. Calheira, 2020. Chapter 3 - Phylum Porifera. In Rogers, D. C., C. Damborenea & J. Thorp (eds) Thorp and Covich's Freshwater Invertebrates (Fourth Edition). Academic Press, 79–92. https://doi.org/10.1016/B978-0-12-804225-0.00003-4

  • Por, F. D., 1995. The Pantanal of Mato Grosso (Brazil): world's largest wetlands, vol 73. Springer Science & Business Media.

  • Power, M., B. Whitney, F. Mayle, D. Neves, E. de Boer & K. Maclean, 2016. Fire, climate and vegetation linkages in the Bolivian Chiquitano Seasonally Dry Tropical Forest. Philosophical Transactions of The Royal Society B Biological Sciences 371. https://doi.org/10.1098/rstb.2015.0165

  • Rasbold, G. G., L. Calheira, L. Domingos-Luz, L. C. R. Pessenda, U. Pinheiro & M. M. McGlue, 2023. A morphological guide of neotropical freshwater sponge spicules for paleolimnological studies. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.1067432

  • Rasbold, G. G., M. M. McGlue, J. C. Stevaux, M. Parolin, A. Silva & I. Bergier, 2019. Sponge spicule and phytolith evidence for Late Quaternary environmental changes in the tropical Pantanal wetlands of western Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 518: 119–133. https://doi.org/10.1016/j.palaeo.2019.01.015.

    Article  ADS  Google Scholar 

  • Rasbold, G. G., M. M. McGlue, J. C. Stevaux, M. Parolin, A. Silva & I. Bergier, 2021. Enhanced middle Holocene organic carbon burial in tropical floodplain lakes of the Pantanal (South America). Journal of Paleolimnology 65(2): 181–199. https://doi.org/10.1007/s10933-020-00159-5.

    Article  ADS  Google Scholar 

  • Rezende-Filho, A., S. Furian, R. Victoria, C. Mascré, V. Valles & L. Barbiero, 2012. Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland. Hydrology and Earth System Sciences 16: 2723–2737. https://doi.org/10.5194/hess-16-2723-2012.

    Article  ADS  CAS  Google Scholar 

  • Roubik, D. & J. E. Moreno, 1991. Pollen and Spores of Barro Colorado Island, vol 47.

  • Salgado-Labouriau, M. L., 1973. Contribuição à palinologia dos cerrados. Academia Brasileira de Ciências Rio de Janeiro.

  • Tortato, F. R. & T. J. Izzo, 2017. Advances and barriers to the development of jaguar-tourism in the Brazilian Pantanal. Perspectives in Ecology and Conservation 15(1): 61–63. https://doi.org/10.1016/j.pecon.2017.02.003.

    Article  Google Scholar 

  • Tremarin, P. I., T. A. V. Ludwig & L. C. Torgan, 2014. Four new Aulacoseira species (Coscinodiscophyceae) from Matogrossense Pantanal Brazil. Diatom Research 29(2): 183–199. https://doi.org/10.1080/0269249X.2014.880072.

    Article  Google Scholar 

  • Twiss, P., E. Suess & R. Smith, 1969. Morphological Classification of Grass Phytoliths1. Soil Science Society of America Journal - SSSAJ 33. https://doi.org/10.2136/sssaj1969.03615995003300010030x

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30(5): 377–392.

    Article  ADS  Google Scholar 

  • Whitney, B. S., F. E. Mayle, S. W. Punyasena, K. A. Fitzpatrick, M. J. Burn, R. Guillen, E. Chavez, D. Mann, R. T. Pennington & S. E. Metcalfe, 2011. A 45kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307(1): 177–192. https://doi.org/10.1016/j.palaeo.2011.05.012.

    Article  ADS  Google Scholar 

  • Zani, H., M. L. Assine & M. M. McGlue, 2012. Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 161–162: 82–92. https://doi.org/10.1016/j.geomorph.2012.04.003.

    Article  ADS  Google Scholar 

Download references

Funding

This work was funded by The São Paulo Research Foundation (FAPESP) (grants 2016/14227–5). G. Rasbold thanks the grants 2020/07726-0 (postdoctoral scholarship).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by GGR, LCRP, PEO, EENA, and DRS. The first draft of the manuscript was written by GGR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Giliane Gessica Rasbold.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests. The authors declare they have potential conflict of interests.

Additional information

Handling editor: Jasmine Saros

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the values of the legend at the bottom of Figure 8 were interchanged.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasbold, G.G., Pessenda, L.C.R., De Oliveira, P.E. et al. Holocene limnological changes in saline and freshwater lakes, Lower Nhecolândia, Pantanal, Brazil. Hydrobiologia 851, 1723–1739 (2024). https://doi.org/10.1007/s10750-023-05411-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05411-3

Keywords

Navigation