Skip to main content
Log in

Movement dynamics and habitat selection of Suwannee bass Micropterus notius

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated movement dynamics and habitat selection of Suwannee bass (Micropterus notius) in one of few river systems known to house this endemic species of the Southeastern United States. The home range of Suwannee bass ranged from a minimum of 0.15 ha to 142.97 ha (mean = 30.61 ± 7.11 ha). Thirty-four percent of tagged individuals made substantial movements in relatively short amounts of time, with the maximum distance recorded at 28.53 km. Movement from these fish were erratic and unrelated to sex, length, weight, or time of year. The remaining 66% of tagged fish moved little across the study period. Suwannee bass exhibited positive selection preferences for limestone and boulder substrates and a negative selection preference for sandy substrate, indicating that coarse substrates likely play a key role in the life history of the species. The observed variability in movement, the potential for long-distance movements to influence population dynamics, and preference for coarse habitat are important attributes that should be considered for future conservation or management efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data collected as part of this study are available from the author upon reasonable request.

References

  • Albanese, B., P. L. Angermeier & S. Dorai-Raj, 2004. Ecological correlates of fish movement in a network of Virginia streams. Canadian Journal of Fisheries and Aquatic Sciences 61(6): 857–869. https://doi.org/10.1139/f04-096.

    Article  Google Scholar 

  • Alvarez, A. C., D. Peterson, A. T. Taylor, M. D. Tringali & B. L. Barthel, 2015. Distribution and Amount of Hybridization between Shoal Bass and the Invasive Spotted Bass in the Lower Flint River, Georgia. In M. D. Tringali, J. M. Long, T. W. Birdsong, & M. S. Allen (Eds), Black Bass Diversity: Multidisciplinary Science for Conservation. Bethesda, MD: American Fisheries Society, Symposium 82, pp. 503–521

  • Bonvechio, T., M. Allen & R. Cailteux, 2005. Relative abundance, growth, and mortality of Suwannee bass in four Florida rivers. North American Journal of Fisheries Management 25: 275–283. https://doi.org/10.1577/M03-161.1.

    Article  Google Scholar 

  • Bonvechio, T. F. & M. S. Allen, 2005. Relations between hydrological variables and year-class strength of sportfish in eight Florida waterbodies. Hydrobiologia 532(1–3): 193–207. https://doi.org/10.1007/s10750-004-1388-y.

    Article  Google Scholar 

  • Booth, M. T., N. G. Hairston & A. S. Flecker, 2013. How mobile are fish populations? Diel movement, population turnover, and site fidelity in suckers. Canadian Journal of Fisheries and Aquatic Sciences 70(5): 666–677. https://doi.org/10.1139/cjfas-2012-0334.

    Article  Google Scholar 

  • Brownscombe, J. W., E. J. Lédée, G. D. Raby, D. P. Struthers, L. F. Gutowsky, V. M. Nguyen & S. J. Cooke, 2019. Conducting and interpreting fish telemetry studies: considerations for researchers and resource managers. Reviews in Fish Biology and Fisheries 29(2): 369–400.

    Article  Google Scholar 

  • Cannister, M. J. & D. L. Bechler, 2019. Fish assemblages of the Withlacoochee river basin in South Georgia, USA. Georgia Journal of Science 77(3): 1r.

    Google Scholar 

  • Cooke, S. J., 2008. Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. Endangered Species Research 4(1–2): 165–185.

    Article  ADS  Google Scholar 

  • Dakin, E. E., B. A. Porter, B. J. Freeman & J. M. Long, 2015. Hybridization threatens shoal bass populations in the Upper Chattahoochee River Basin. In M. D. Tringali, J. M. Long, T. W. Birdsong, & M. S. Allen (Eds), Black Bass Diversity: Multidisciplinary Science for Conservation. Bethesda, MD: American Fisheries Society, Symposium 82, pp. 491–502

  • Davis, L. A., T. Wagner & M. L. Bartron, 2015. Spatial and temporal movement dynamics of brook Salvelinus fontinalis and brown trout Salmo trutta. Environmental Biology of Fishes 98(10): 2049. https://doi.org/10.1007/s10641-015-0428-y.

    Article  Google Scholar 

  • Gerking, S. D., 1953. Evidence for the concepts of home range and territory in stream fishes. Ecology 34(2): 347–365. https://doi.org/10.2307/1930901.

    Article  Google Scholar 

  • Gerking, S. D., 1959. The restricted movement of fish populations. Biological Reviews 34(2): 221–242. https://doi.org/10.1111/j.1469-185x.1959.tb01289.x.

    Article  Google Scholar 

  • Goclowski, M. R., A. J. Kaeser & S. M. Sammons, 2012. Movement and habitat differentiation among adult shoal bass, largemouth bass, and spotted bass in the Upper Flint River, Georgia. North American Journal of Fisheries Management 32(6): 56–70.

    Google Scholar 

  • Gowan, C., M. K. Young, K. D. Fausch & S. C. Riley, 1994. Restricted movement in resident stream salmonids: a paradigm lost? Canadian Journal of Fisheries and Aquatic Sciences 51(11): 2626–2637.

    Article  Google Scholar 

  • Harden Jones, F. R., 1968. Fish Migrations, St. Martin’s Press, New York:

    Google Scholar 

  • Joslin, T. L., 2010. Middle and late Holocene hunter -gatherer adaptations to coastal ecosystems along the southern San Simeon Reef, California. (Ph.D.), University of California, Santa Barbara, Ann Arbor.

  • Komsta, L. & F. Novomestky, 2015. moments: Moments, cumulants, skewness, kurtosis and related tests. Retrieved from https://CRAN.R-project.org/package=moments

  • Koppelman, J. B., & G. P. Garrett, 2002. Distribution, biology, and conservation of the rare black bass species. In D. P. Philipp & M. S. Ridgway (Eds), Black Bass: Ecology, Conservation, and Management. Bethesda, MD: American Fisheries Society, Symposium 31, pp. 333–341

  • Koster, W. M. & D. A. Crook, 2017. Using telemetry data to develop conceptual models of movement to support the management of riverine fishes. Marine and Freshwater Research 68(8): 1567–1575.

    Article  Google Scholar 

  • Krause, J., S. P. Loader, J. McDermott & G. D. Ruxton, 1998. Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proceedings: Biological Sciences 265(413): 2373–2379.

    PubMed Central  Google Scholar 

  • Langhurst, R. W. & D. L. Schoenike, 1990. Seasonal migration of smallmouth bass in the embarrass and Wolf Rivers, Wisconsin. North American Journal of Fisheries Management 10(2): 224–227.

    Article  Google Scholar 

  • Linfield, R. S. J., 1985. An alternative concept to home range theory with respect to populations of cyprinids in major river systems. Journal of Fish Biology 27(sa): 187–196. https://doi.org/10.1111/j.1095-8649.1985.tb03241.x.

    Article  Google Scholar 

  • Littrell, B. M., D. J. Lutz-Carrillo, T. H. Bonner & L. T. Fries, 2007. Status of an introgressed Guadalupe bass population in a Central Texas stream. North American Journal of Fisheries Management 27(3): 785–791.

    Article  Google Scholar 

  • McClure, C., M. C. Quist, J. R. Kozfkay, M. P. Peterson & D. J. Schill, 2020. Movement dynamics of smallmouth bass in a large Western river system. North American Journal of Fisheries Management 40(1): 154–162.

    Article  Google Scholar 

  • Nagid, E. J., T. F. Bonvechio, K. I. Bonvechio & W. F. Porak, 2015. Suwannee bass Micropterus notius Species Bailey & Hubbs, 1949. Pages 67–73 in M. S. Tringali, M. S. Allen, T. Birdsong, J. M. Long, editors. Black bass diversity: Multidisciplinary science for conservation. American Fisheries Society, Symposium 82, Bethesda, Maryland.

  • NatureServe, 2014. Micropterus notius. The IUCN Red List of Threatened Species 2014: e.T13403A19032574. https://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T13403A19032574.en. Accessed 24 January 2023.

  • Peacock, M. M., M. S. Gustin, V. S. Kirchoff, M. L. Robinson, E. Hekkala, C. Pizzarro-Barraza & T. Loux, 2016. Native fishes in the Truckee River: are in-stream structures and patterns of population genetic structure related? The Science of the Total Environment 563–564: 221–236. https://doi.org/10.1016/j.scitotenv.2016.04.056.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Peoples, B. K., E. Judson, T. L. Darden, D. J. Farrae, K. Kubach, J. Leitner & M. C. Scott, 2021. Modeling distribution of endemic Bartram’s Bass Micropterus sp cf coosae: disturbance and proximity to invasion source increase hybridization with invasive Alabama Bass. North American Journal of Fisheries Management 41(5): 1309–1321.

    Article  Google Scholar 

  • Perkin, J. S., Z. R. Shattuck, P. T. Bean, T. H. Bonner, E. Saraeva & T. B. Hardy, 2010. Movement and microhabitat associations of Guadalupe bass in two Texas Rivers. North American Journal of Fisheries Management 30(1): 33–46. https://doi.org/10.1577/M09-070.1.

    Article  Google Scholar 

  • Popoff, N. D. & R. M. Neumann, 2005. Range and movement of resident Holdover and Hatchery Brown Trout tagged with radio transmitters in the Farmington River, Connecticut. North American Journal of Fisheries Management 25(2): 413–422. https://doi.org/10.1577/M03-151.1.

    Article  Google Scholar 

  • Radinger, J. & C. Wolter, 2014. Patterns and predictors of fish dispersal in rivers. Fish and Fisheries 15(3): 456–473.

    Article  Google Scholar 

  • Rodriguez, M. A., 2002. Restricted movement in stream fish: the paradigm is incomplete, not lost. Ecology 83(1): 1. https://doi.org/10.2307/2680115.

    Article  MathSciNet  Google Scholar 

  • Sammons, S., 2015. First evidence of potadromy and partial migration in black basses: shoal bass Micropterus cataractae (Actinopterygii, Centrarchidae) in the Upper Flint River, USA. Hydrobiologia 751(1): 135–146. https://doi.org/10.1007/s10750-015-2182-8.

    Article  CAS  Google Scholar 

  • Schall, M. K., T. Wertz, G. D. Smith, V. S. Blazer & T. Wagner, 2019. Movement dynamics of smallmouth bass (Micropterus dolomieu) in a large river-tributary system. Fisheries Management and Ecology 26(6): 590. https://doi.org/10.1111/fme.12369.

    Article  Google Scholar 

  • Silverman, B. W., 1986. Density Estimation for Statistics and Data Analysis, Chapman and Hall, London:

    Google Scholar 

  • Skalski, G. T. & J. F. Gilliam, 2000. Modeling diffusive spread in a heterogeneous population: a movement study with stream fish. Ecology 81(6): 1685–700.

    Article  Google Scholar 

  • Strong, W. A., E. J. Nagid & T. Tuten, 2010. Observations of physical and environmental characteristics of Suwannee Bass spawning in a spring-fed Florida River. Southeastern Naturalist 9(4): 699–710. https://doi.org/10.1656/058.009.0405.

    Article  Google Scholar 

  • R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/

  • Thompson, D. H., 1933. The migration of Illinois fishes. Biological notes; no. 001.

  • Vokoun, J. C., 2003. Kernel density estimates of linear home ranges for stream fishes: advantages and data requirements. North American Journal of Fisheries Management 23(3): 1020–1029.

    Article  Google Scholar 

  • Woolnough, D. A., J. A. Downing & T. J. Newton, 2009. Fish movement and habitat use depends on water body size and shape. Ecology of Freshwater Fish 18(1): 83–91. https://doi.org/10.1111/j.1600-0633.2008.00326.x.

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Deener, J. Glomb, H. Greenway, D. Harrison, T. Hessler, D. Higginbotham, J. Swearingen, R. Weller, and others who assisted in field sampling and project preparation. Funding for this study was provided by the Georgia Department of Natural Resources, grant no. F20AF00082-01. This study was conducted under University of Georgia IACUC protocol 10-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel W. Yeager.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Louise Chavarie

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeager, J.W., Bonvechio, T.F. & Hamel, M.J. Movement dynamics and habitat selection of Suwannee bass Micropterus notius. Hydrobiologia 851, 1153–1167 (2024). https://doi.org/10.1007/s10750-023-05379-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05379-0

Keywords

Navigation