Skip to main content
Log in

Is salinity a driving factor for the phytoplankton community structure of a brackish shallow Mediterranean lake?

  • MICROALGAL FUNCTIONAL TRAITS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton is a well-studied group of organisms that can change rapidly with environmental conditions, providing a reliable response to these changes. We analysed phytoplankton biomass, diversity, and its response to environmental conditions in the shallow brackish Mediterranean Lake Vransko. Although protected as Nature Park, the Lake's succession is enhanced by intensive agricultural activity and an artificial connection to the sea. Analysis of phytoplankton reveals a specific community composition strongly influenced not only by nutrients but also by salinity gradient, with species composition shifting from freshwater to brackish. Conditions of higher salinity support the dominance of brackish species, often with low biomass, while periods of low salinity are characterised by dominance of cyanobacteria or other freshwater species capable of rapidly taking up nutrients and forming algal blooms. Changes in water transparency caused by phytoplankton dynamics strongly influence the overall lake system through the availability of macrophyte growth and sediment fixation. These findings are critical for the future lake management, particularly its hydrological regime and maintenance of natural oligohaline and mesotrophic conditions. Understanding the response of phytoplankton to environmental conditions, exacerbated by anthropogenic influence and recent climate change, contributes to the protection of Mediterranean shallow lakes at local and global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Alegro, A., N. Koletić, A. Rimac, N. Vuković & V. Šegota, 2019. Istraživanje sastava vrsta alga iz porodice Characeae. Hrvatsko botaničko društvo - HBoD, Zagreb, 20.

  • Allende, L., M. S. Fontanarrosa, A. Murno & R. Sinistro, 2019. Phytoplankton functional group classifications as a tool for biomonitoring shallow lakes: a case study. Knowledge & Management of Aquatic Ecosystems 420(5): 14. https://doi.org/10.1051/kmae/2018044.

    Article  Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2015. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UK.

  • APHA, 2005. Standard Methods for the Examination of Water & Wastewater, American Public Health Association, Washington, USA.

    Google Scholar 

  • Basu, S. & K. R. M. Mackey, 2018. Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability 10(3): 869.

    Article  Google Scholar 

  • Boegle, M. G., S. C. Schneider, H. Schubert & A. Melzer, 2010. Chara baltica Bruzelius 1824 and Chara intermedia A. Braun 1859—distinct species or habitat specific modifications? Aquatic Botany 93(3):195–201.

  • Bukowska, A., T. Kaliński, M. Koper, I. Kostrzewska-Szlakowska, J. Kwiatowski, H. Mazur-Marzec & I. Jasser, 2017. Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Scientific Reports 7(1): 1–12.

    Article  CAS  Google Scholar 

  • Caput Mihalić, K., M. Gligora Udovič, I. Galović, I. Stanković, M. Šušnjara, P. Žutinić, A. Kulaš, I. Špoljarić & Z. Levkov, 2019. Tetramphora croatica sp. nov.—a new brackish-water species from Lake Vransko, Croatia. Phytotaxa 401(4):276–286.

  • Caroni, R., G. Free, A. Visconti & M. Manca, 2012. Phytoplankton functional traits and seston stable isotopes signature: a functional-based approach in a deep, subalpine lake, Lake Maggiore (N. Italy). Journal of Limnology 71: 84–94.

    Article  Google Scholar 

  • CEN - EN 15204, 2006. Water quality—guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique) (EN 15204:2006). European Committee for Standardization (CEN) Brussels, Belgium.

  • CEN - EN 15708, 2009. Water quality—guidance standard for the surveying, sampling and laboratory analysis of phytobenthos in shallow running water (EN 15708:2009). European Committee for Standardization (CEN) Brussels, Belgium.

  • CEN - EN 16695, 2015. Water quality—guidance on the estimation of microalgal biovolume (EN 16695:2015). European Committee for Standardization (CEN) Brussels, Belgium.

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

  • Coesel, P. F. M. & K. Meesters, 2007. Desmids of the Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands. KNNV Publishing.

  • Cole, J. J., R. W. Howarth, S. S. Nolan & R. Marino, 1986. Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry 2(2): 179–196.

    Article  CAS  Google Scholar 

  • EN 12260:2003. Water quality - Determination of nitrogen—determination of bound nitrogen (TNb), following oxidation to nitrogen oxides. European Committee for Standardization (CEN) Brussels, Belgium.

  • EN ISO 17294-2:2016. Water quality—application of inductively coupled plasma mass spectrometry (ICP-MS)—part 2: determination of selected elements including uranium isotopes. International Organization for Standardization, Geneva, Switzerland.

  • EN ISO 6878:2004. Water quality—determination of phosphorus—ammonium molybdate spectrometric method. International Organization for Standardization, Geneva, Switzerland.

  • Ernest, G. & O. Pringsheim, 1949. The growth requirements of Porphyridium cruentum: with remarks on the ecology of brackish water algae. Journal of Ecology 37: 57–64.

    Article  Google Scholar 

  • Fajković, H., I. Lovrenčić Mikelic & E. Prohić, 2012. Vertical distribution of 40K, 232Th, and 137Cs mass activities in lake sediment (Vransko Lake, Croatia) and their relationship with the source material and sedimentation. Journal of Radioanalytical and Nuclear Chemistry 295(3): 2273–2282.

    Article  Google Scholar 

  • Fernández, C., E. R. Parodi & E. J. J. L. Cáceres, 2012. Phytoplankton structure and diversity in the eutrophic-hypereutrophic reservoir Paso de las Piedras. Argentina. Limnology 13(1): 13–25.

    Article  Google Scholar 

  • Flöder, S. & C. W. Burns, 2004. Phytoplankton diversity of shallow tidal lakes: influence of periodic salinity changes on diversity and species number of a natural assemblage. Journal of Phycology 40: 54–61.

    Article  Google Scholar 

  • Gligora, M., A. Plenković-Moraj, K. Kralj, I. Grigorszky & D. Peroš-Pucar, 2007. The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia). Hydrobiologia 584(1): 337–346.

    Article  CAS  Google Scholar 

  • Gligora Udovič, M. & A. Plenković-Moraj, 2003. Contribution of desmids to phytoplankton assemblies in two Croatian karstic lakes. Biologia 58: 701–708.

    Google Scholar 

  • GrapherTM, 2019. Golden Software, Inc., 809 14th Street, Golden, Colorado 80401.

  • Guiry, M. D. & G. M. Guiry, 2021. AlgaeBase. In: World-wide electronic publication. National University of Ireland, Galway. http://www.algaebase.org Accessed 25 May 2021.

  • Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardón, K. N. Hopfensperger, L. P. M. Lamers & P. Gell, 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6(10): 1–43.

    Article  Google Scholar 

  • Hill, M. O., C. D. Preston & D. B. Roy, 2004. PLANTATT—attributes of British and Irish plants: status, size, life history, geography and habitats. NERC Centre for Ecology & Hydrology, Wallingford, UK.

  • Hintz, W. D. & R. A. Relyea, 2019. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biology 64: 1081–1097.

    Article  Google Scholar 

  • Howarth, R. & H. W. Paerl, 2008. Coastal marine eutrophication: control of both nitrogen and phosphorus is necessary. Proceedings of the National Academy of Sciences 105(49): E103.

    Article  ADS  Google Scholar 

  • IBM Corp. Released, 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342–343: 151–164.

    Article  Google Scholar 

  • Jordan, T. E., J. C. Cornwell, W. R. Boynton & J. T. Anderson, 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: the Iron Conveyer Belt. Limnology and Oceanography 53:172e184.

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota. 1. Teil Chroococcales In Ettl, H., G. Gärtner, H. Heynig, & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Bd. 19/1: Begründet von A. Pascher. Spektrum Akademischer Verlag Gmbh, Berlin, 1–548.

  • Komárek, J. & F. Hindák, 1988. Taxonomic review of natural population of the cyanophytes from the Gomphosphaeria-complex. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes Schweizerbart’sche Verlagsbuchhandlung 203–225.

  • Komárek, J. & J. R. Johansen, 2015. Coccoid Cyanobacteria. In Wehr, J. D., R. G. Sheath & R. P. Kociolek (eds), Freshwater Algae of North America: Ecology and Classification 2nd ed. Academic Press, Amsterdam: 75–134.

    Chapter  Google Scholar 

  • Kruk, C., M. Devercelli, V. L. M. Huszar, E. Hernández, G. Beamud, M. Diaz, L. H. S. Silva & A. M. Segura, 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology 62(10): 1681–1692.

    Article  CAS  Google Scholar 

  • Lange-Bertalot, H., 2001. Diatoms of Europe, Volume 2: Navicula Sensu Stricto, 10 Genera Separated from Navicula Sensu Lato, Frustulia, vol 2. Gantner Verlag, Koenigstein

  • Larson, C. A. & G. E. Belovsky, 2013. Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. Journal of Plankton Research 35(5): 1154–1166.

    Article  Google Scholar 

  • Leoni, B., M. Patelli, V. Soler & V. Nava, 2018. Ammonium transformation in 14 lakes along a trophic gradient. Water 10(3): 1–13.

    Article  ADS  Google Scholar 

  • Lionard, M., K. Muylaert, D. V. Gansbeke & W. Vyverman, 2005. Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands). Hydrobiologia 540: 105–115. https://doi.org/10.1007/s10750-004-7123-x.

    Article  Google Scholar 

  • Liu, C., S. Shao, L. Zhang, Y. Du, K. Chen, C. Fan & Y. Yu, 2019. Sulfur development in the water-sediment system of the Algae Accumulation Embay Area in Lake Taihu. Water MDPI AG 11: 1817. https://doi.org/10.3390/W11091817.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11(2): 143–170.

    Article  Google Scholar 

  • Ma, J., B. Qin, H. W. Paerl, J. D. Brookes, P. Wu, J. Zhou, J. Deng, J. Guo & Z. Li, 2015. Green algal over cyanobacterial dominance promoted with nitrogen and phosphorus additions in a mesocosm study at Lake Taihu, China. Environmental Science and Pollution Research 22(7): 5041–5049.

    Article  CAS  PubMed  Google Scholar 

  • Masmoudi, S., E. Tastard, W. Guermazi, A. Caruso, A. Morant-Manceau & H. Ayadi, 2015. Salinity gradient and nutrients as major structuring factors of the phytoplankton communities in salt marshes. Aquatic Ecology 49(1): 1–19.

    Article  CAS  Google Scholar 

  • Meerhoff, M., F. Teixeira-de Mello, C. Kruk, C. Alonso, I. González-Bergonzoni, J. P. Pacheco, G. Lacerot, M. Arim, M. Beklioğlu, S. Brucet, G. Goyenola, C. Iglesias, N. Mazzeo, S. Kosten & E. Jeppesen, 2012. 4—environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. In Jacob, U. & G. Woodward (eds), Advances in Ecological Research, Vol. 46. Academic Press: 259–349.

    Google Scholar 

  • Mohamed, Z. A., 2017. Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management—a review. Limnologica 63: 122–132.

    Article  CAS  Google Scholar 

  • Mohleji, S. C. & F. H. Verhoff, 1980. Sodium and potassium ions effects on phosphorus transport in algal cells. Water Pollution Control Federation 52(1): 110–125.

    CAS  Google Scholar 

  • Moss, B., 1994. Brackish and freshwater shallow lakes—different systems or variations on the same theme? Hydrobiologia 275(1): 1–14.

    Article  Google Scholar 

  • Mulderij, G., E. H. Van Nes & E. Van Donk, 2007. Macrophyte–phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecological Modelling 204(1): 85–92.

    Article  Google Scholar 

  • Muylaert, K., C. Pérez-Martínez, P. Sánchez-Castillo, T. L. Lauridsen, M. Vanderstukken, S. A. J. Declerck, K. Gucht, J.-M. Conde-Porcuna, E. Jeppesen, L. Meester & W. Vyverman, 2010. Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe. Hydrobiologia 653(1): 79–90.

    Article  CAS  Google Scholar 

  • Nowak, P. & H. Schubert, 2019. Genetic variability of charophyte algae in the Baltic Sea area. Botanica Marina 62(1): 75–82.

    Article  Google Scholar 

  • Obolewski, K., K. Glińska-Lewczuk, M. Szymańska, N. Mrozińska, M. Bąkowska, A. Astel, S. Lew & E. Paturej, 2018. Patterns of salinity regime in coastal lakes based on structure of benthic invertebrates. PLoS ONE 13(11): 1–19.

    Article  Google Scholar 

  • Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1): 1–19.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24(5): 417–428.

    Article  Google Scholar 

  • Rijstenbil, J. W., 1987. Phytoplankton composition of stagnant and tidal ecosystems in relation to salinity, nutrients, light and turbulence. Netherlands Journal of Sea Research 21(2): 113–123.

    Article  ADS  Google Scholar 

  • Rijstenbil, J. W., 1988. Selection of phytoplankton species in culture by gradual salinity changes. Netherlands Journal of Sea Research 22(3): 291–300. https://doi.org/10.1016/0077-7579(88)90031-2.

    Article  ADS  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz Z Hydrologie 43(1): 34–62.

    Google Scholar 

  • Rubinić, J. & A. Katalinić, 2014. Water regime of Vrana Lake in Dalmatia (Croatia): changes, risks and problems. Hydrological Sciences Journal 59(10): 1908–1924.

    Article  Google Scholar 

  • Rühland, K. M., A. M. Paterson & J. P. Smol, 2015. Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology 54(1): 1–35.

    Article  ADS  Google Scholar 

  • Rushforth, S. & S. Spaulding, 2010. Navicula trivialis. In: Diatoms of North America. https://diatoms.org/species/navicula_trivialis. Accessed May 19, 2021.

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60(4): 603–619.

    Article  Google Scholar 

  • Sayer, C. D., T. A. Davidson & J. I. Jones, 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshwater Biology 55(3): 500–513.

    Article  CAS  Google Scholar 

  • Schneider, S. C., P. Nowak, U. Von Ammon & A. Ballot, 2016. Species differentiation in the genus Chara (Charophyceae): considerable phenotypic plasticity occurs within homogenous genetic groups. European Journal of Phycology 51(3): 282–293.

    Article  Google Scholar 

  • Seitzinger, S. P., W. S. Gardner & A. K. Spratt, 1991. The effect of salinity on ammonium sorption in aquatic sediments: implications for benthic nutrient recycling. Estuaries 14: 167–174.

    Article  CAS  Google Scholar 

  • Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition. A case study for a deep, nutrient rich lake (Lake Constance). In Round, F. E. & D. J. Chapman (eds), Progress in Phycological Research Biopress Ltd., Bristol: 122–178.

    Google Scholar 

  • Stanković, I., T. Vlahović, M. Gligora Udovič, G. Várbíró & G. Borics, 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698(1): 217–231.

    Article  Google Scholar 

  • Steffensen, D. A., 1974. Distribution of Euglena obtusa Schmitz and E. salina Liebetanz on the Avon-Heathcote estuary. Christchurch. Mauri Ora 2: 85–94.

    Google Scholar 

  • Steinhardt, T. & U. Selig, 2011. Influence of salinity and sediment resuspension on macrophyte germination in coastal lakes. Journal of Limnology 70(1): 11–20.

    Article  Google Scholar 

  • Šiljeg, A., S. Lozić & S. Šiljeg, 2015. A comparison of interpolation methods on the basis of data obtained from a bathymetric survey of Lake Vrana, Croatia. Hydrology and Earth System Sciences 9: 3653–3666.

    Article  ADS  Google Scholar 

  • ter Braak, C. & P. Šmilauer, 2012. Canoco reference manual and user’s guide: software of ordination (version 5.0). Microcomputer Power (Ithaca, NY, USA).

  • They, N., D. da Motta Marques, L. Crossetti, V. Becker, E. Canterle, L. Ribeiro Rodrigues, L. Cardoso & C. Fragoso Jr., 2014. Phytoplankton ecological interactions in freshwater ecosystems—integrating relationships in subtropical shallow lakes. In Sebastiá, M. T. (ed), Phytoplankton: Biology, Classification, and Environmental Impacts Nova Science Publisher Inc., New York: 73–130.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollcommung der Quantitiven Phytoplankton Methodik. Verhandlungen Der Internationalen Vereinigung Für Theoretische Und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van den Berg, M. S., M. Scheffer, E. Van Nes & H. Coops, 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408(0):335–342.

  • van Donk, E. & D. O. Hessen, 1993. Grazing resistance in nutrient-stressed phytoplankton. Oecologia 93(4): 508–511.

    Article  PubMed  ADS  Google Scholar 

  • Velthuis, M., S. Teurlincx, G. van Dijk, A. J. P. Smolders, & L. N. de Senerpont Domis, 2023. Salinisation effects on freshwater macrophyte growth and establishment in coastal eutrophic agricultural ditches. Freshwater Biology 68(4): 547–560.

  • Vincent, W. F., 2009. Cyanobacteria. In Likens, G. E. (ed), Encyclopedia of Inland Waters Academic Press, Oxford: 226–232.

    Chapter  Google Scholar 

  • Vuković, N., A. Alegro, N. Koletić, A. Rimac & V. Šegota, 2020. Analiza makrofita Vranskog jezera od 2010. do 2019. godine u okviru projekta CHANGE WE CARE. Hrvatsko botaničko društvo - HBoD, Zagreb, 20.

  • Wang, C., H. Jia, J. Wei, W. Yang, Y. Gao, Q. Liu, D. Ge & N. Wu, 2021. Phytoplankton functional groups as ecological indicators in a subtropical estuarine river delta system. Ecological Indicators 126: 1–9.

    Article  Google Scholar 

  • Weithoff, G., A. Lorke & N. Walz, 2000. Effects of water-column mixing on bacteria, phytoplankton, and rotifers under different levels of herbivory in a shallow eutrophic lake. Oecologia 125(1): 91–100.

    Article  CAS  PubMed  ADS  Google Scholar 

  • White, E., Jr. & D. Kaplan, 2017. Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosystem Health and Sustainability 3(1): 1–18.

    Article  Google Scholar 

  • Widney, S. E., D. Smith, E. R. Herbert, J. P. Schubauer-Berigan, F. Li, S. C. Pennings & C. B. Craft, 2019. Chronic but not acute saltwater intrusion leads to large release of inorganic N in a tidal freshwater marsh. Science of the Total Environment 695: 3–11.

    Article  Google Scholar 

  • WFD, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities 43: 1–83.

    Google Scholar 

  • Wolowski, K., 2003. Euglenophytes reported from karst sink-holes in the Malopolska Upland (Poland, Central Europe). Annales De Limnologie - International Journal of Limnology 39: 333–346.

    Article  Google Scholar 

  • Žutinić, P., M. Gligora Udovič, K. Kralj Borojević, A. Plenković-Moraj & J. Padisák, 2014. Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740(1): 147–166.

    Article  Google Scholar 

Download references

Acknowledgements

This survey was conducted as part of the surveys of fish fauna in the Lake Vransko in 2004 and 2009, and as part of the national water quality monitoring supported by Hrvatske vode in recent years.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Žutinić.

Ethics declarations

Conflict of interest

All authors declare they have no financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Viktória B-Béres, Luigi Naselli-Flores, Judit Padisák & Gábor Borics / Trait-Based Approaches in Micro-Algal Ecology

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanković, I., Gligora Udovič, M., Žutinić, P. et al. Is salinity a driving factor for the phytoplankton community structure of a brackish shallow Mediterranean lake?. Hydrobiologia 851, 999–1013 (2024). https://doi.org/10.1007/s10750-023-05300-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05300-9

Keywords

Navigation