Abstract
Due to their life cycle shared between rivers and oceans, amphidromous organisms serve as intriguing models for studying biogeography. To investigate the implications of their unique life history, we examined the population structure of the amphidromous shrimp Caridina natalensis across its known range in the South Western Indian Ocean. A total of 118 specimens were collected from 7 islands (Mayotte, Mohéli, Mahé, Praslin, Silhouette, Mauritius and Madagascar) and the African mainland (South Africa), and their 16S rRNA and Cox1 mitochondrial genes were sequenced. Our findings reveal significant regional structure among archipelagos, suggesting complex patterns of dispersal involving successive events of extinction-recolonization. By conducting a comparative analysis with six other amphidromous species from the South Western Indian Ocean, based on literature sources, we were able to draw conclusions regarding the amphidromous biogeography of the area. Furthermore, we propose a novel classification of amphidromous species, considering their population structure and life history traits. We defined four categories of increasing dispersal abilities and decreasing genetic population structure: 1. Land-locked species; 2. Species with reduced or facultative amphidromy; 3. Species with common amphidromy; and 4. Super-amphidromous species. Lastly, we identified the Comoros Islands (namely Mayotte and Mohéli) as a critical area for the dispersal of amphidromous species, emphasizing the need for prioritizing conservation efforts in this region.
Similar content being viewed by others
References
Abdou, A., 2021. New taxonomic and phylogeographic data on three nominal species of the genus Septaria Férussac, 1807 (Gastropoda: Cycloneritida: Neritidae). Zootaxa 4915(1): 28–40. https://doi.org/10.11646/zootaxa.4915.1.2.
Abdou, A., P. Keith & R. Galzin, 2015. Freshwater neritids (Mollusca: Gastropoda) of tropical islands, amphidromy as a life cycle, a review. Revue D’écologie (terre Et Vie) 70(4): 387–397.
Abdou, A., C. Lord, P. Keith & R. Galzin, 2019. Phylogéographie de Neritina stumpffi Boettger, 1890 et Neritina canalis Sowerby, 1825 (Gastropoda, Cycloneritida, Neritidae). Zoosystema 41(12): 237–248. https://doi.org/10.5252/zoosystema2019v41a12.
Atkinson, J. M., 1977. Larval development of a freshwater prawn, Macrobrachium lar (Decapoda, Palaemonidae). Reared in the Laboratory. Crustaceana 33(2): 119–132. https://doi.org/10.1163/156854077x00025.
Bandelt, H. J., P. Forster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16(1): 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.
Barber, P. H., S. R. Palumbi, M. V. Erdmann & M. K. Moosa, 2002. Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Molecular Ecology 11: 659–674.
Bauer, R. T., 2013. Amphidromy in shrimps: a life cycle between rivers and the sea. Latin American Journal of Aquatic Research 41(4): 633–650. https://doi.org/10.3856/vol41-issue4-fulltext-2.
Bernardes, S. C., A. R. Pepato, T. von Rintelen, K. von Rintelen, T. J. Page, H. Freitag & M. De Bruyn, 2017. The complex evolutionary history and phylogeography of Caridina typus (Crustacea: Decapoda): long-Distance dispersal and cryptic allopatric species. Scientific Reports. https://doi.org/10.1038/s41598-017-08494-w.
Bernardes, S. C., K. von Rintelen, T. von Rintelen, A. R. Pepato, T. J. Page & M. de Bruyn, 2021. Ecological changes have driven biotic exchanges across the Indian Ocean. Scientific Reports 11(1): 1–10. https://doi.org/10.1038/s41598-021-02799-7.
Carini, G. & J. M. Hughes, 2004. Population structure of Macrobrachium australiense (Decapoda: Palaemonidae) in Western Queensland, Australia: the role of contemporary and historical processes. Heredity 93(4): 350–363. https://doi.org/10.1038/sj.hdy.6800510.
Castelin, M., P. Feutry, M. Hautecoeur, G. Marquet, D. Wowor, G. Zimmermann & P. Keith, 2013. New insight on population genetic connectivity of widespread Amphidromous prawn Macrobrachium Lar (Fabricius, 1798) (Crustacea: Decapoda: Palaemonidae). Marine Biology 160(6): 1395–1406. https://doi.org/10.1007/s00227-013-2191-y.
Chubb, A. L., R. M. Zink & J. M. Fitzsimons, 1998. Patterns of mtDNA variation in hawaiian freshwater fishes: the phylogeographic consequences of Amphidromy. The Journal of Heredity 89(1): 8–16.
Cook, D. B., S. Bernays, C. M. Pringle & J. M. Hughes, 2009. Marine dispersal determines the genetic population structure of migratory stream fauna of Puerto Rico: evidence from island-scale population recovery process. Journal of the North American Benthological Society 28: 709–718. https://doi.org/10.1899/09-008.1.
Crandall, E. D., J. R. Taffel & P. H. Barber, 2009. High gene flow due to pelagic larval dispersal among South Pacific Archipelagos in two Amphidromous gastropods (Neritomorpha: Neritidae). Heredity 104(6): 563–572. https://doi.org/10.1038/hdy.2009.138.
Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. JModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772–772. https://doi.org/10.1038/nmeth.2109.
de Mazancourt, V., M. Castelin, C. Renneville, M. C. Mlambo, G. Marquet & P. Keith, 2019. Revalidation of Caridina natalensis De Man, 1908 (Crustacea: Decapoda: Atyidae) in the South western Indian Ocean. Zootaxa 4543(3): 375–387. https://doi.org/10.11646/zootaxa.4543.3.3.
de Mazancourt, V., W. Klotz, G. Marquet, B. Mos, D. C. Rogers & P. Keith, 2021. New Insights on Biodiversity and Conservation of Amphidromous Shrimps of the Indo-Pacific islands (Decapoda: Atyidae: Caridina). In Kawai, T. & D. C. Rogers (eds), Recent advances in freshwater crustacean biodiversity and conservation CRC Press, Boca Raton: 381–404.
Dennenmoser, S., M. Thel & C. D. Schubart, 2010. High genetic variability with no apparent geographic structuring in the mtDNA of the amphidromous river shrimp Cryphiops caementarius (Decapoda: Palemonidae) in northern-central Chile. Journal of Crustacean Biology 30: 762–765. https://doi.org/10.1651/09-3273.1.
Edgar, R. C., 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340.
Ellien, C., R. Causse, U. Werner, N. Teichert & K. Rousseau, 2020. Looking for environmental and endocrine factors inducing the transformation of Sicyopterus lagocephalus (Pallas 1770) (Teleostei: Gobiidae: Sicydiinae) freshwater prolarvae into marine larvae. Aquat Ecol 54: 163–180. https://doi.org/10.1007/s10452-019-09734-z.
Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564–567.
Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2): 479–491. https://doi.org/10.5962/bhl.title.86657.
Fahrig, L., 2002. Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecological Applications 12(2): 346–353. https://doi.org/10.1890/1051-0761(2002)012[0346:eohfot]2.0.co;2.
Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783–791.
Feutry, P., P. Valade, J. R. Ovenden, P. J. Lopez, P. Keith, P. Feutry, P. Valade, J. R. Ovenden, P. J. Lopez & P. Keith, 2012. Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from Indo-Pacific insular systems. Marine and Freshwater Research 63(5): 397–402. https://doi.org/10.1071/MF11243.
Feutry, P., A. Vergnes, D. Broderick, L. J. P. Keith & J. R. Ovenden, 2013. Stretched to the limit: can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)? Molecular Ecology 2013 22(6): 1518–1530.
Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2): 915–925.
Fujita, J., K. Zenimoto, A. Iguchi, Y. Kai, M. Ueno & Y. Yamashita, 2016. Comparative phylogeography to test for predictions of marine larval dispersal in three Amphidromous shrimps. Marine Ecology Progress Series 560: 105–120. https://doi.org/10.3354/meps11911.
Gamoyo, M., D. Obura & C. J. C. Reason, 2019. Estimating connectivity through larval dispersal in the Western Indian Ocean. Journal of Geophysical Research: Biogeosciences 124(8): 2446–2459. https://doi.org/10.1029/2019JG005128.
García-Velazco, H., A. M. Maeda-Martínez, H. Obregón-Barboza, G. Rodríguez-Almaraz, J. L. Villalobos-Hiriart & G. Murugan, 2014. Evidence of oceanic dispersal of a disjunctly distributed Amphidromous shrimp in Western North America: First Record of Macrobrachium occidentale from the Baja California Peninsula. Journal of Crustacean Biology 34(2): 199–215. https://doi.org/10.1163/1937240X-00002217.
García-Velazco, H., A. M. Maeda-Martínez, H. Obregón-Barboza, O. Campos-Torres & G. Murugan, 2017. The systematics of the Mexican populations of Macrobrachium digueti (Bouvier, 1895) (Decapoda: Caridea: Palaemonidae). Journal of Crustacean Biology 37(2): 168–186. https://doi.org/10.1093/JCBIOL/RUX008.
Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.
Han, C., C. Lai, C. Huang, I.-C. Wang, H. Lin & W. Wang, 2022. Phylogeographic structuring of the Kuroshio-type prawn Macrobrachium japonicum (Decapoda: Palaemonidae) in Taiwan and Ryukyu Islands. Diversity 14(8): 617. https://doi.org/10.3390/d14080617.
Hanski, I., 1999. Metapopulation ecology, Oxford University Press:
Heim-Ballew, H., K. N. Moody, M. J. Blum, P. B. McIntyre & J. D. Hogan, 2020. Migratory flexibility in native Hawai’ian amphidromous fishes. Journal of Fish Biology 96(2): 456–468. https://doi.org/10.1111/jfb.14224.
Hoarau, P. E. & P. B. Valade, 2017. Note sur la fécondité de Caridina longirostris H. Milne Edwards, 1837 et de son évolution au cours de l’incubation sur une petite rivière du Nord de Mayotte, archipel des Comores, Sud-Ouest de l’océan Indien ( Decapoda : Atyidae ). Cahiers Scientifiques De L’océan Indien Occidental 8: 5–12.
Holthuis, L. B., 1965. The Atyidae of Madagascar. Mémoires Du Muséum National D’histoire Naturelle, Série a, Zoologie 33(1): 1–48.
Hughes, J. M., S. E. Bunn, D. A. Hurwood, S. Choy & R. G. Pearson, 1996. Genetic differentiation among populations of Caridina zebra (Decapoda: Atyidae) in tropical rainforest streams, northern Australia. Freshwater Biology 36: 289–296.
Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes & A. Drummond, 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199.
Keith, P., 2003. Biology and Ecology of Amphidromous Gobiidae of the Indo-Pacific and the Caribbean Regions. Journal of Fish Biology 63(4): 831–847. https://doi.org/10.1046/j.1095-8649.2003.00197.x.
Keith, P. & C. Lord, 2011a. Biology and ecology of amphidromous Gobiidae in the Indo-pacific and the Carrbean regions. Journal of Fish Biology 63: 831–847.
Keith, P. & C. Lord, 2011b. Tropical freshwater gobiies: amphidromy as a life cycle. In Patzner, R. A., J. L. Van Tessel, M. Kovacic & B. G. Kapoor (eds), The Biology of gobies Science Publishers, St Helier: 119–128.
Keith, P., E. Vigneux & P. Bosc, 1999. Atlas des poissons et des crustacés d’eau douce de la Réunion, Muséum national d’Histoire naturelle, Paris:
Keith, P., G. Marquet, P. Valade, P. Bosc & E. Vigneux, 2006. Atlas des poissons et des crustacés d’eau douces des Comores, Mascareignes et Seychelles, Muséum national d’Histoire naturelle, Paris:
Kritzer, J. P. & P. F. Sale, 2004. Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish and Fisheries 5(2): 131–140. https://doi.org/10.1111/J.1467-2979.2004.00131.X.
Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096.
Lagarde, R., N. Teichert, P. Valade & D. Ponton, 2020. Structure of small tropical island freshwater fish and crustacean communities: a niche-or dispersal-based process? Biotropica. https://doi.org/10.1111/btp.12865.
Liao, T. Y., P. L. Lu, Y. H. Yu, W. C. Huang, J. C. Shiao, HDu. Lin, W. C. Jhuang, T. K. Chou & F. Li, 2021. Amphidromous but endemic: Population connectivity of Rhinogobius gigas (Teleostei: Gobioidei). PLOS ONE 16(2): e0246406. https://doi.org/10.1371/JOURNAL.PONE.0246406.
Lord, C., C. Brun, M. Hautecoeur & P. Keith, 2010. Comparaison of the duration of the marine larval phase estimated by otolith microstructures analysis of three amphidromous Sicyopterus species (Gobiidae: Sicydiinae) from Vanuatu and New Caledonia insights an endemism. Ecology of Freshwater Fish 19: 26–38.
Lord, C., J. Lorion, A. Dettai, S. Watanabe, K. Tsukamoto, C. Cruaud & P. Keith, 2012. From endemism to widespread distribution: Phylogeography of three amphidromous Sicyopterus species (Teleostei: Gobioidei: Sicydiinae). Marine Ecology Progress Series 455: 269–285. https://doi.org/10.3354/meps09617.
Lord, C., K. Maeda, P. Keith & S. Watanabe, 2015. Population structure of the asian amphidromous Sicydiinae goby, Stiphodon percnopterygionus, inferred from mitochondrial COI sequences, with comments on larval dispersal in the northwest pacific ocean. Vie Et Milieu 65(2): 63–71.
Mantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1).
Maruyama, A., Y. Yamada, M. Yuma & B. Rusuwa, 2001. Stable nitrogen and carbon isotope ratios as migration tracers of a landlocked goby, Rhinogobius sp. (the orange form), in the Lake Biwa water system. Ecological Research 16: 697–703.
McDowall, R. M., 2007. On Amphidromy, a distinct form of diadromy in aquatic organisms. Fish and Fisheries 8(1): 1–13. https://doi.org/10.1111/j.1467-2979.2007.00232.x.
Mennesson, M., H. Tabouret, C. Pécheyran, E. Feunteun & P. Keith, 2015. Amphidromous life cycle of Eleotris fusca (Gobioidei: Eleotridae), a widespread species from the Indo-Pacific studied by otolith analyses. Cybium 39(4): 249–260. https://doi.org/10.26028/cybium/2015-394-002.
Mennesson, M., C. Bonillo, E. Feunteun & P. Keith, 2018. Phylogeography of Eleotris fusca (Teleostei: Gobioidei: Eleotridae) in the Indo-Pacific area reveals a cryptic species in the Indian Ocean. Conservation Genetics 19: 1025–1038.
Miller, Mark A., Wayne Pfeiffer, and Terri Schwartz. (2010). “Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees.” In Proceedings of the Gateway Computing Environments Workshop (GCE), 1–8. New Orleans.
Murphy, C. A. & J. H. Cowan, 2007. Production, marine larval retention or dispersal, and recruitment of Amphidromous Hawaiian Gobioids: issues and implications. Bishop Museum Bulletin in Cultural and Environmental Studies 3: 63–74.
Myers, G. S., 1949. Usage of Anadromous, Catadromous and allied terms for migratory fishes. Copeia 1949(2): 80–97. https://doi.org/10.2307/1438482.
Myers, M. J., C. P. Meyer & V. H. Resh, 2000. Neritid and thiarid gastropods from French Polynesian streams: how reproduction (sexual, parthenogenetic) and dispersal (active, passive) affect population structure. Freshwater Biology 44(3): 535–545. https://doi.org/10.1046/J.1365-2427.2000.00599.X.
Myers, G. S. (1938). Fresh water fishes and west Indian zoogeography (Vol. 3465). US Government Printing Office.
Nakahara, Y., A. Hagiwara, Y. Miya & K. Hirayama, 2005. Larval Rearing of three Amphidromous shrimp species (Atyidae) under different feeding and salinity conditions. Aquaculture Science 53(3): 305–310.
Nei, M., 1987. Molecular evolutionary. Genetics. https://doi.org/10.7312/nei-92038.
Oliveira, C. M. C. A., M. Terossi, F. L. Mantelatto, C. M. C. A. Oliveira, M. Terossi & F. L. Mantelatto, 2019. Phylogeographic structuring of the amphidromous shrimp Atya scabra (Crustacea, Decapoda, Atyidae) unveiled by range-wide mitochondrial DNA sampling. Marine and Freshwater Research 70(8): 1078–1093. https://doi.org/10.1071/MF18272.
Page, T. J. & J. M. Hughes, 2007. Radically different scales of phylogeographic structuring within cryptic species of freshwater shrimp (Atyidae: Caridina). Limnology and Oceanography 52(3): 1055–1066. https://doi.org/10.4319/lo.2007.52.3.1055.
Richard, J. & P. F. Clark, 2010. Caridina H Milne Edwards, 1837 (Crustacea: Decapoda: Caridea: Atyoidea: Atyidae) – Freshwater shrimps from eastern and Southern Africa. Zootaxa 337(2372): 305–337.
Roberts, C. M., 1997. Connectivity and management of Carribean coral reefs. Science 278(5342): 1454–1457. https://doi.org/10.1126/science.278.5342.1454.
Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180.
Rossi, N. & F. L. Mantelatto, 2013. Molecular analysis of the freshwater prawn Macrobrachium olfersii (Decapoda, Palaemonidae) supports the existence of a single species throughout its distribution. PLOS ONE 8(1): e54698. https://doi.org/10.1371/JOURNAL.PONE.0054698.
Rousset, F., 1997. Genetic differentiation and estimation of gene flow from f-statistics under isolation by distance. Genetics 145: 1219–1228.
Rousset, F. & M. Raymond, 1997. Statistical analyses of population genetic data: new tools, old concepts. Trends in Ecology & Evolution 12(8): 313–317. https://doi.org/10.1016/S0169-5347(97)01104-X.
Rozas, J., A. Ferrer-Mata, J. C. Sánchez-DelBarrio, S. Guirao-Rico, P. Librado, S. E. Ramos-Onsins & A. Sánchez-Gracia, 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34(12): 3299–3302. https://doi.org/10.1093/molbev/msx248.
Shen, K. N. & W. N. Tzeng, 2002a. Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology Progress Series 228: 205–211.
Shen, K. N. & W. N. Tzeng, 2002b. Reproductive strategy and recruitment dynamics of amphidromous goby Sicyopterus japonicus as revealed by otolith microstructures. Journal Fish Biology 73: 2497–2512.
Stamatakis, A., 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033.
Taillebois, L., M. Castelin, J. R. Ovenden, C. Bonillo & P. Keith, 2013. Contrasting genetic structure among populations of two amphidromous fish species (Sicydiinae) in the Central West Pacific. PLOS ONE 8(10): e75465. https://doi.org/10.1371/JOURNAL.PONE.0075465.
Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105(2): 437–460. https://doi.org/10.1093/genetics/105.2.437.
Tsang, L. M., K. H. Tsoi, S. K. F. Chan, T. K. T. Chan & K. H. Chu, 2016. Strong genetic differentiation among populations of the freshwater shrimp Caridina cantonensis in Hong Kong: implications for conservation of freshwater fauna in urban areas. Marine and Freshwater Research 68(1): 187–194. https://doi.org/10.1071/MF15377.
Visram, S., M. C. Yang, R. M. Pillay, S. Said, O. Henriksson, M. Grahn & C. A. Chen, 2010. Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean. Marine Biology 157(7): 1475–1487. https://doi.org/10.1007/s00227-010-1422-8.
Watterson, G. A., 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7: 256–276.
Wood, L. E., S. de Grave & S. R. Daniels, 2019. A comparative evolutionary study reveals radically different scales of genetic structuring within two atyid shrimp species (Crustacea: Decapoda: Atyidae). Zoological Journal of the Linnean Society 186(1): 200–212. https://doi.org/10.1093/zoolinnean/zly044.
Wright, S., 1949. The genetical structure of populations. Annals of Eugenics 15(1): 323–354. https://doi.org/10.1111/j.1469-1809.1949.tb02451.x.
Zhang, W., S. Jiang, K. R. Salumy, Z. Xuan, Y. Xiong, S. Jin, Y. Gong, Y. Wu, H. Qiao & H. Fu, 2022. Comparison of genetic diversity and population structure of eight Macrobrachium nipponense populations in China based on D-loop sequences. Aquaculture Reports 23: 101086. https://doi.org/10.1016/J.AQREP.2022.101086.
Acknowledgements
Comoros archipelago: thanks to Ibrahim Yahaya, Abdallah Ahmed Soilihi and Halidi Ahmed Ben Ali. We are also grateful to Conservation International (CI) and particularly to F. Hawkins and CI Madagascar. Mayotte: Thanks to DAF (Direction de l'agriculture et de la forêt) and ARDA (Association Réunionaise de Développement de l’Aquaculture). Seychelles: We thank H. Grondin of ARDA (Association Réunionaise de Développement de l’Aquaculture) in Reunion Island for giving us specimens from this archipelago. Magagascar: We thank the DIAMSOI team (The IH-SM from Tuléar with Dr Man-Wai Rabenevanana and the MNHN from Paris with E. Feunteun, P. Keith and T. Robinet) and the ARDA team (P. Bosc, H. Grondin and P. Valade). We are grateful to Joe Aride from Madagascar National Parcs (MNP-ANGAP) and to the manager of Masoala National Parc at Maroantsetra. Lastly, we want to thank all the Responsible Chiefs of the areas concerned for their kind permission, and the villages and communities who have always heartily received us and helped us in our prospecting of rivers. This research was financed by the Institut Français de la Biodiversité (IFB) for the DIAMSOI program (2007–2010). South Africa: We are grateful to Patrick Kubheka and Helen James for facilitating collecting permits for us with provincial conservation urgencies in KwaZulu-Natal and Eastern Cape (permit no. CRO69/17CR), respectively. We thank Nick and Tim McClurg, Patrick Kubheka, Lazola Maliwa and Pascal Tiberghien for their help in the field and Albert Chakona (SAIAB) for lending us his electric fishing gear. Thanks to D. Christopher Rogers for providing us specimens from Mauritius. Thanks to the Service de Systématique Moléculaire of the MNHN.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no financial or non-financial interests that are directly or indirectly related to the present work.
Additional information
Handling editor: Diego Fontaneto
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
De Mazancourt, V., Abdou, A., Castelin, M. et al. Molecular ecology of the freshwater shrimp Caridina natalensis and comparative analysis with other amphidromous species (Decapoda, Teleostei, and Gastropoda). Hydrobiologia 850, 3997–4014 (2023). https://doi.org/10.1007/s10750-023-05283-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-023-05283-7