Skip to main content

Advertisement

Log in

Environmental and aquatic macroinvertebrates metrics respond to the Eucalyptus afforestation gradient in subtropical lowland streams

  • STREAM ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Eucalyptus afforestation may affect stream ecosystems, but the magnitude of these effects on water quality and biota in subtropical lowland streams is little understood. We evaluated the potential effects of Eucalyptus afforestation on water quality and macroinvertebrate assemblage. Water quality parameters and macroinvertebrate assemblages were sampled in summer and winter in 30 streams covering an afforestation gradient (from 0.05 to 96% of the catchment area) and tested their relationship. We analyzed the taxa density distribution in afforestation and water parameters using the Thresholds Indicator Taxa Analyses (TITAN). Nutrient concentrations, conductivity, and total dissolved solids showed positive responses to the increase of afforestation, but the responses varied among seasons. Macroinvertebrate metrics showed negative (Ephemeroptera-Trichoptera-Plecoptera (EPT), sensitive families, scrapers), and positive (Chironominae, Oligochaeta) responses to the afforestation. Densities of sensitive taxa (mostly EPT) decrease with an increase in Eucalyptus afforestation, which is also related to water quality and possibly to habitat changes attributed to afforestation management. The use of water quality parameters in combination with macroinvertebrates assemblage contributes to managing these streams under catchment afforestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available in the supplementary material. Additional information may be acquired from the corresponding authors upon a reasonable request.

Code availability

Upon a reasonable request, the code used to analyze the data that supported our results is available from the corresponding authors.

References

  • Abelho, M. & M. A. S. Graça, 1996. Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324: 195–204.

    Article  Google Scholar 

  • Alcántara, I., A. Somma, G. Chalar, A. Fabre, A. Segura, M. Achkar, R. Arocena, L. Aubriot, C. Baladán, M. Barrios & S. Bonilla, 2022. A reply to “Relevant factors in the eutrophication of the Uruguay River and the Río Negro.” Science of the Total Environment 818: 151854.

    Article  PubMed  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Springer Nature, Dordrecht:

    Book  Google Scholar 

  • Allen, A. & D. Chapman, 2001. Impacts of afforestation on groundwater resources and quality. Hydrogeology Journal 9: 390–400.

    Article  CAS  Google Scholar 

  • Alvareda, E., C. Lucas, M. Paradiso, A. Piperno, P. Gamazo, V. Erasun, P. Russo, A. Saracho, R. Banega, G. Sapriza & F. T. de Mello, 2020. Water quality evaluation of two urban streams in northwest Uruguay: are national regulations for urban stream quality sufficient? Environmental Monitoring and Assessment 192: 1–22.

    Google Scholar 

  • Anderson, M. J., 2011. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Baker, M. E. & R. S. King, 2010. A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution 1: 25–37.

    Article  Google Scholar 

  • Baker, M. E., R. S. King & D. Kahle, 2015. TITAN2: threshold indicator taxa analysis. R Package Version 2: 1.

    Google Scholar 

  • Barrios, M. & F. Teixeira de Mello, 2022. Urbanization impacts water quality and the use of microhabitats by fish in subtropical agricultural streams. Environmental Conservation. https://doi.org/10.1017/S0376892922000200.

    Article  Google Scholar 

  • Barrios, M., M. Burwood, A. Krӧger, C. Calvo, B. Ríos-Touma & F. Teixeira-de-Mello, 2022. Riparian cover buffers the effects of abiotic and biotic predictors of leaf decomposition in subtropical streams. Aquatic Sciences 84: 55.

    Article  CAS  Google Scholar 

  • Basaguren, A. & J. Pozo, 1994. Leaf litter processing of alder and eucalyptus in the Agüera stream system (Northern Spain) II. Macroinvertebrates associated. Archiv Für Hydrobiologie. https://doi.org/10.1127/archiv-hydrobiol/132/1994/57.

    Article  Google Scholar 

  • Belsky, A. J., A. Matzke & S. Uselman, 1999. Survey of livestock influences on stream and riparian ecosystems in the western United States. Journal of Soil and Water Conservation 54: 419–431.

    Google Scholar 

  • Benejam, L., F. Teixeira-de Mello, M. Meerhoff, M. Loureiro, E. Jeppesen & S. Brucet, 2016. Assessing effects ofchange in land use on size-related variables offish in subtropical streams. Canadian Journal of Fisheries and Aquatic Sciences 73: 547–556.

    Article  Google Scholar 

  • Benke, A. C., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bernardi, R. E., M. Holmgren, M. Arim & M. Scheffer, 2016. Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Forest Ecology and Management 363: 212–217.

    Article  Google Scholar 

  • Biasi, C., M. A. Graça, S. Santos, & V. Ferreira, 2017. Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing. Oecologia 184: 555–568.

  • Brand, C. & M. L. Miserendino, 2015. Testing the performance of macroinvertebrate metrics as indicators of changes in biodiversity after pasture conversion in Patagonian Mountain streams. Water, Air, & Soil Pollution 226: 370.

    Article  Google Scholar 

  • Brazeiro, A. (Ed.). 2015. Eco-Regiones de Uruguay: Biodiversidad, Presiones y conservación. Aportes a la Estrategia Nacional de Biodiversidad. Facultad de Ciencias, CIEDUR, VS-Uruguay, SZU, Montevideo.

  • Bridgewater, L. L., R. B. Baird, A. D. Eaton, & E. W. Rice, 2017. American Public Health Association, American Water Works Association & Water Environmental Federation (eds). Standard methods for the examination of water and wastewater

  • Brown, A. E., A. W. Western, T. A. McMahon & L. Zhang, 2013. Impact of forest cover changes on annual streamflow and flow duration curves. Journal of Hydrology 483: 39–50.

    Article  Google Scholar 

  • Bunn, S. E., E. G. Abal, M. J. Smith, S. C. Choy, C. S. Fellows, B. D. Harch, M. J. Kennard & F. Sheldon, 2010. Integration of science and monitoring of river ecosystem health to guide investments in catchment protection and rehabilitation. Freshwater Biology 55: 223–240.

    Article  Google Scholar 

  • Burwood, M., J. Clemente, M. Meerhoff, C. Iglesias, G. Goyenola, C. Fosalba & F. Teixeira de Mello, 2021. Macroinvertebrate communities and macrophyte decomposition could be affected by land use intensification in subtropical lowland streams. Limnetica 40: 343–357.

    Article  Google Scholar 

  • Buss, D. F., D. M. Carlisle, T. Chon, J. Culp, J. S. Harding, H. E. Keizer-Vlek, W. A. Robinson, S. Strachan, C. Thirion & R. M. Hughes, 2015. Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environmental Monitoring and Assessment 187(1): 4132.

    Article  PubMed  Google Scholar 

  • Cairns, J. & J. R. Pratt, 1993. A history of Biological Monitoring Using Benthic Macro- invertebrates. In Rosemberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Macroinvertebrates Chapman & Hall, London: 10–27.

    Google Scholar 

  • Calder, I. R. 1992. The hydrological impact of land-use change (with special reference to afforestation and deforestation). In Overseas Development Administration, Proceedings of the Conference on Priorities for water resources allocation and management. Natural Resources and Engineering Advisers Conference. Crown Copyright, Southampton: 91–102.

  • Callanan, M., J. R. Baars & M. Kelly-Quinn, 2008. Critical influence of seasonal sampling on the ecological quality assessment of small headwater streams. Hydrobiologia 610: 245–255.

    Article  CAS  Google Scholar 

  • Calvão, L. B., D. S. Nogueira, L. F. de Assis Montag, M. A. Lopes & L. Juen, 2016. Are Odonata communities impacted by conventional or reduced impact logging? Forest Ecology and Management 382: 143–150.

    Article  Google Scholar 

  • Campos, C. A., M. J. Kennard & J. F. G. Júnior, 2021. Diatom and Macroinvertebrate assemblages to inform management of Brazilian savanna’s watersheds. Ecological Indicators 128: 107834.

    Article  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwater Biology 34: 209–214.

    Article  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology. https://doi.org/10.1007/s002489900140.

    Article  PubMed  Google Scholar 

  • Canhoto, C. & C. Laranjeira, 2007. Leachates of Eucalyptus globulus in intermittent streams affect water parameters and invertebrates. International Review of Hydrobiology 92: 173–182.

    Article  CAS  Google Scholar 

  • Canhoto, C., R. Calapez, A. L. Gonçalves & M. Moreira-Santos, 2013. Effects of Eucalyptus leachates and oxygen on leaf-litter processing by fungi and stream invertebrates. Freshwater Science 32: 411–424.

    Article  Google Scholar 

  • Capurro, L., M. Castro, G. Chalar & R. Arocena, 2021. Taxonomía y ecología de los Oligochaeta de la cuenca del Río Negro y otros registros para Uruguay. Boletín De La Sociedad Zoológica Del Uruguay 30: e30–e32.

    Google Scholar 

  • Céspedes-Payret, C., G. Piñeiro, M. Achkar, O. Gutiérrez & D. Panario, 2009. The irruption of new agro-industrial technologies in Uruguay and their environmental impacts on soil, water supply and biodiversity: a review. International Journal of Environment and Health 3: 175–197.

    Article  Google Scholar 

  • Chalar, G., R. Arocena, J. P. Pacheco & D. Fabián, 2011. Trophic assessment of streams in Uruguay: a trophic state index for Benthic Invertebrates (TSI-BI). Ecological Indicators 11: 362–369.

    Article  CAS  Google Scholar 

  • Chalar, G., P. Garcia-Pesenti, M. Silva-Pablo, C. Perdomo, V. Olivero & R. Arocena, 2017. Weighting the impacts to stream water quality in small basins devoted to forage crops, dairy and beef cow production. Limnologica 65: 76–84.

    Article  CAS  Google Scholar 

  • Chang, F. H., J. E. Lawrence, B. Rios-Touma & V. H. Resh, 2014. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental Monitoring and Assessment 186: 2135–2149.

    Article  CAS  PubMed  Google Scholar 

  • Chao, A., C. H. Chiu & L. Jost, 2014. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics 45: 297–324.

    Article  Google Scholar 

  • Clapcott, J. E., K. J. Collier, R. G. Death, E. O. Goodwin, J. S. Harding, D. Kelly, J. R. Leathwick & R. G. Young, 2012. Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshwater Biology 57: 74–90.

    Article  Google Scholar 

  • Corbet, P. S., 1999. Dragonflies: Behavior and Ecology of Odonata: Comstock Pub., Associates, Cornell Univ. Press, Ithaca:

    Google Scholar 

  • Cordero-Rivera, A., A. M. Álvarez & M. Álvarez, 2017. Eucalypt plantations reduce the diversity of macroinvertebrates in small forested streams. Animal Biodiversity and Conservation 40: 87–97.

    Article  Google Scholar 

  • Correa-Araneda, F., L. Boyero, R. Figueroa, C. Sánchez, R. Abdala, A. Ruiz-García & M. A. Graça, 2015. Joint effects of climate warming and exotic litter (Eucalyptus globulus Labill.) on stream detritivore fitness and litter breakdown. Aquatic Sciences 77: 197–205.

    Article  Google Scholar 

  • Correa-Araneda, F., A. Basaguren, R. T. Abdala-Díaz, A. M. Tonin & L. Boyero, 2017. Resource-allocation tradeoffs in caddisflies facing multiple stressors. Ecology and Evolution 7: 5103–5110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortelezzi, A., R. S. Barranquero, C. B. Marinelli, M. R. F. San Juan & R. E. Cepeda, 2019. Environmental diagnosis of an urban basin from a social–ecological perspective. Science of the Total Environment 678: 267–277.

    Article  CAS  PubMed  Google Scholar 

  • Cribari-Neto, F. & A. Zeileis, 2010. Beta regression in R. Journal of Statistical Software 34: 1–24.

    Article  Google Scholar 

  • Crumrine, P. W., P. V. Switzer & P. H. Crowley, 2008. Structure and Dynamics of Odonate Communities: Accessing Habitat, Responding to Risk, and Enabling Reproduction. In Córdoba-Aguilar, Alex (ed), Dragonflies and Damselflies. Model Organisms for Ecological and Evolutionary Research Oxford University Press, Oxford: 21–39.

    Chapter  Google Scholar 

  • Cummins, K. W., M. Wilzbach, B. Kolouch & R. Merritt, 2022. Estimating macroinvertebrate biomass for stream ecosystem assessments. International Journal of Environmental Research and Public Health 19: 3240.

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva, D. M. L., J. P. H. B. Ometto, G. D. A. Lobo, W. D. P. Lima, M. A. Scaranello, E. Mazzi & H. R. D. Rocha, 2007. Can land use changes alter carbon, nitrogen and major ion transport in subtropical Brazilian streams? Scientia Agricola 64: 317–324.

    Article  Google Scholar 

  • de Barros Ferraz, S. F., C. B. Rodrigues, L. G. Garcia, C. A. Alvares & W. de Paula Lima, 2019. Effects of Eucalyptus plantations on streamflow in Brazil: moving beyond the water use debate. Forest Ecology and Management 453: 117571.

    Article  Google Scholar 

  • de Cáceres, M., P. Legendre & M. Moretti, 2010. Improving indicator species analysis by combining groups of sites. Oikos 119: 1674–1684.

    Article  Google Scholar 

  • de Marco Júnior, P., J. D. Batista & H. S. R. Cabette, 2015. Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PloS One 10: e0123023.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Paula Lima, W., S. F. de Barros Ferraz, C. Bozetti Rodrigues & M. Voigtlaender, 2012. Assessing the Hydrological Effects of Forest Plantations in Brazil. In Boon, Philip J. & Paul J. Raven (eds), River Conservation and Management, John Wiley & Sons Ltd Hoboken: 59–68.

    Chapter  Google Scholar 

  • Delignette, M. L. & C. Dutang, 2015. Fitdistrplus: an {R package for fitting distributions. Journal of Statistical Software 64: 1–34.

    Google Scholar 

  • Delignette-Muller, M. L. & C. Dutang, 2015. Fitdistrplus: an R package for fitting distributions. Journal of Statistical Software 64: 1–34.

    Article  Google Scholar 

  • Dirección General Forestal, 2021. Cartografía Nacional Forestal. División Evaluación e Información (DEI) de la Dirección General Forestal (DGF) del Ministerio de Ganadería, Agricultura y Pesca (MGAP), Uruguay.

  • Dirección General Forestal, 2022. Estadísticas Forestales 2022, Extracción – Producción - Consumo - Mano de Obra - Comercio Exterior. Ministerio de Ganadería, Agricultura y Pesca (MGAP), Uruguay.

  • Dresel, P. E., J. F. Dean, F. Perveen, J. A. Webb, P. Hekmeijer, S. M. Adelana & E. Daly, 2018. Effect of Eucalyptus plantations, geology, and precipitation variability on water resources in upland intermittent catchments. Journal of Hydrology 564: 723–739.

    Article  Google Scholar 

  • Dufrene, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Ebling, E. D., J. M. Reichert, J. J. Z. Peláez, M. F. Rodrigues, M. L. Valente, R. B. L. Cavalcante, P. Reggiani & R. Srinivasan, 2021. Event-based hydrology and sedimentation in paired watersheds under commercial eucalyptus and grasslands in the Brazilian Pampa biome. International Soil and Water Conservation Research 9: 180–194.

    Article  Google Scholar 

  • Engel, V., E. G. Jobbágy, M. Stieglitz, M. Williams & R. B. Jackson, 2005. Hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Water Resources Research 41: W10409.

    Article  Google Scholar 

  • Eriksen, T. E., J. E. Brittain, G. Søli, D. Jacobsen, P. Goethals & N. Friberg, 2021. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America. Mexico and Southern Asia. Ecological Indicators 126: 107609.

    Article  Google Scholar 

  • Estadísticas Agropecuárias, 2020. Anuario Estadístico Agropecuário. Ministerio de Ganadería, Agricultura y Pesca, Uruguay.

  • Farley, K. A., E. G. Jobbágy & R. B. Jackson, 2005. Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology 11: 1565–1576.

    Article  Google Scholar 

  • Farley, K. A., G. Piñeiro, S. M. Palmer, E. G. Jobbágy & R. B. Jackson, 2008. Stream acidification and base cation losses with grassland afforestation. Water Resources Research. https://doi.org/10.1029/2007WR006659.

    Article  Google Scholar 

  • Ferreira, V., A. Larrañaga, V. Gulis, A. Basaguren, A. Elosegi, M. A. Graça & J. Pozo, 2015. The effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams. Forest Ecology and Management 335: 129–138.

    Article  Google Scholar 

  • Ferreira, V., J. Koricheva, J. Pozo & M. A. Graça, 2016. A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. Forest Ecology and Management 364: 27–38.

    Article  Google Scholar 

  • Ferreira, V., L. Boyero, C. Calvo, F. Correa, R. Figueroa, J. F. Gonçalves, G. Goyenola, M. A. Graça, L. U. Hepp, S. Kariuki & A. López-Rodríguez, 2018. A global assessment of the effects of Eucalyptus plantations on stream ecosystem functioning. Ecosystems 22: 629–642.

    Article  Google Scholar 

  • Ferreira, V. M. B., N. D. O. Paiva, B. E. Soares & M. Moraes, 2021. Diversity and microhabitat use of benthic invertebrates in an urban forest stream (Southeastern Brazil). Iheringia. Série Zoologia 111.

  • Fierro, P., L. Quilodrán, C. Bertrán, I. Arismendi, J. Tapia, F. Pena-Cortés, E. Hauenstein, R. Arriagada, E. Fernández & L. Vargas-Chacoff, 2016. Rainbow trout diets and macroinvertebrate assemblage responses from watersheds dominated by native and exotic plantations. Ecological Indicators 60: 655–667.

    Article  CAS  Google Scholar 

  • Fierro, P., C. Bertrán, J. Tapia, E. Hauenstein, F. Peña-Cortés, C. Vergara, C. Cerna & L. Vargas-Chacoff, 2017. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Science of the Total Environment 609: 724–734.

    Article  CAS  PubMed  Google Scholar 

  • Fierro, P., C. Valdovinos, I. Arismendi, G. Díaz, A. Jara-Flores, E. Habit & L. Vargas-Chacoff, 2019. Examining the influence of human stressors on benthic algae, macroinvertebrate, and fish assemblages in Mediterranean streams of Chile. Science of the Total Environment 686: 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Firmiano, K. R., R. Ligeiro, D. R. Macedo, L. Juen, R. M. Hughes & M. Callisto, 2017. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecological Indicators 74: 276–284.

    Article  CAS  Google Scholar 

  • García, L., W. F. Cross, I. Pardo & J. S. Richardson, 2017. Effects of landuse intensification on stream basal resources and invertebrate communities. Freshwater Science 36: 609–625.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos. https://doi.org/10.2307/3546505.

    Article  Google Scholar 

  • Giorgi, A., C. Feijoó, & G. Tell, 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity & Conservation 14: 1699–1718.

  • Goyenola, G., M. Meerhoff, F. Teixeira-de Mello, I. González-Bergonzoni, D. Graeber, C. Fosalba, N. Vidal, N. Mazzeo, N. B. Ovesen, E. Jeppesen & B. Kronvang, 2015. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes. Hydrology and Earth System Sciences 19: 4099–4111.

    Article  CAS  Google Scholar 

  • Goyenola, G., D. Graeber, M. Meerhoff, E. Jeppesen, F. Teixeira-de Mello, N. Vidal, C. Fosalba, N. B. Ovesen, J. Gelbrecht, N. Mazzeo & B. Kronvang, 2020. Influence of farming intensity and climate on lowland stream nitrogen. Water. https://doi.org/10.3390/w12041021.

    Article  Google Scholar 

  • Goyenola, G., C. Kruk, N. Mazzeo, A. Nario, C. Perdomo, C. Piccini & M. Meerhoff, 2021. Production, nutrients, eutrophication and cyanobacteria blooms in Uruguay: putting puzzle pieces together. INNOTEC. https://doi.org/10.26461/22.02.

    Article  Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams - a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Graça, M. A., J. Pozo, C. Canhoto & A. Elosegi, 2002. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams. The Scientific World Journal 2: 1173–1185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffero, L., J. Alcántara-Durán, C. Alonso, L. Rodríguez-Gallego, D. Moreno-González, J. F. García-Reyes, A. Molina-Díaz & A. Pérez-Parada, 2019. Basin-scale monitoring and risk assessment of emerging 211 contaminants in South American Atlantic coastal lagoons. Science of the Total Environment 697: 134058.

    Article  CAS  PubMed  Google Scholar 

  • Guillermo-Ferreira, R. & K. Del-Claro, 2011. Oviposition site selection in Oxyagrion microstigma Selys, 1876 (Odonata: Coenagrionidae) is related to aquatic vegetation structure. International Journal of Odonatology 14: 275–279.

    Article  Google Scholar 

  • Haretche, F., P. Mai, & A. Brazeiro, 2012. Woody flora of Uruguay: inventory and implication within the Pampean region. Acta Botanica Brasilica 26: 537–552.

  • Hawtree, D., J. P. Nunes, J. J. Keizer, R. Jacinto, J. Santos, M. E. Rial-Rivas, A. K. Boulet, F. Tavares-Wahren & K. H. Feger, 2015. Time series analysis of the long-term hydrologic impacts of afforestation in the Águeda watershed of north-central Portugal. Hydrology and Earth System Sciences 19: 3033–3045.

    Article  Google Scholar 

  • Hernández, J. 2016. Dinámica de los nutrientes y la materia orgánica del suelo en los Sistemas forestales. (Doctoral dissertation). Facultad de Agronomía, Universidad de la República, Uruguay.

  • Horak, C. N., Y. A. Assef, M. G. Grech & M. L. Miserendino, 2020. Agricultural practices alter function and structure of macroinvertebrate communities in Patagonian piedmont streams. Hydrobiologia 847: 3659–3676.

    Article  CAS  Google Scholar 

  • Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, T. M. Kincaid, L. Reynolds & D. P. Larsen, 1998. A process for developing and evaluating indices of fish assemblage integrity. Canadian Journal of Fisheries and Aquatic Science 55: 1618–1631.

    Article  Google Scholar 

  • IMPO, Dirección Nacional de Impresiones y Publicaciones Oficiales, 2021. Decreto N° 405/021, Creación del registro ambiental de plantaciones forestales, a cargo de la DINACEA. https://www.impo.com.uy/bases/decretos/405-2021/2

  • Instituto Uruguayo de Meteorología, INUMET, 2022. Estadísticas climatológicas, Tablas estadísticas. https://www.inumet.gub.uy/clima/estadisticas-climatologicas/tablas-estadisticas.

  • Iteba, J. O., T. Hein, G. A. Singer & F. O. Masese, 2021. Livestock as vectors of organic matter and nutrient loading in aquatic ecosystems in African savannas. Plos One 16: e0257076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaurena, M., M. Durante, T. Devincenzi, J. V. Savian, D. Bendersky, F. G. Moojen, M. Pereira, P. Soca, F. L. Quadros, R. Pizzio & C. Nabinger, 2021. Native grasslands at the core: a new paradigm of intensification for the Campos of Southern South America to increase economic and environmental sustainability. Frontiers in Sustainable Food Systems 5: 547834.

    Article  Google Scholar 

  • Jobbágy, E. G., G. Baldi & M. D. Nosetto, 2012. Tree plantation in South America and the water cycle: impacts and emergent opportunities. In Schlichter, T. & L. Montes (eds), Forests in Development: A Vital Balance Springer, Dordrecht.: 53–63.

    Google Scholar 

  • Jost, L., 2006. Entropy and diversity. Oikos 113(2): 363–375.

    Article  Google Scholar 

  • King, R. S. & C. J. Richardson, 2003. Integrating bioassessment and ecological risk assessment: an approach to developing numerical water-quality criteria. Environmental Management 31: 795–809.

    Article  PubMed  Google Scholar 

  • Larrañaga, A., S. Larrañaga, A. Basaguren, A. Elosegi & J. Pozo, 2006. Assessing impact of Eucalyptus plantations on benthic macroinvertebrate communities by a litter exclusion experiment. Annales De Limnologie-International Journal of Limnology 42: 1–8.

    Article  Google Scholar 

  • Larrañaga, A., A. Basaguren, A. Elosegi & J. Pozo, 2009. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredder traits. Fundamental and Applied Limnology/archiv Für Hydrobiologie 175: 151–160.

    Article  Google Scholar 

  • Larrañaga, A., A. Martínez, R. Albariño, J. J. Casas, V. Ferreira & R. Principe, 2021. Effects of exotic tree plantations on plant litter decomposition in streams. In Swan, C. M., L. Boyero & C. Canhoto (eds), The Ecology of Plant Litter Decomposition in Stream Ecosystems Springer International Publishing, Cham: 297–322.

    Chapter  Google Scholar 

  • Liu, Z., Z. Li, D. M. Castro, X. Tan, X. Jiang, X. Meng, Y. Ge & Z. Xie, 2021. Effects of different types of land-use on taxonomic and functional diversity of benthic macroinvertebrates in a subtropical river network. Environmental Science and Pollution Research 28: 44339–44353.

    Article  PubMed  Google Scholar 

  • Manning, D. W., V. Ferreira, V. Gulis & A. D. Rosemond, 2021. Pathways, mechanisms, and consequences of nutrient-stimulated plant litter decomposition in streams. In Swan, C. M., L. Boyero & C. Canhoto (eds), The ecology of plant litter decomposition in stream ecosystems Springer International Publishing, Cham: 347–377.

    Chapter  Google Scholar 

  • Marques, M. M. G. S. M., F. A. R. Barbosa & M. Callisto, 1999. Distribution and abundance of Chironomidae (Diptera, Insecta) in an impacted watershed in South-east Brazil. Revista Brasileira De Biologia 59: 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Masese, F. O. & P. O. Raburu, 2017. Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. African Journal of Aquatic Science 42: 219–233.

    Article  Google Scholar 

  • Miguel, T. B., J. M. B. Oliveira-Junior, R. Ligeiro & L. Juen, 2017. Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators 81: 555–566.

    Article  CAS  Google Scholar 

  • Miserendino, M. L., 2001. Length-mass relationships for macroinvertebrates in freshwater environments of Patagonia (Argentina). Ecología Austral 11: 3–8.

    Google Scholar 

  • Miserendino, M. L., R. Casaux, M. Archangelsky, C. Y. Di Prinzio, C. Brand & A. M. Kutschker, 2011. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Science of the Total Environment 409: 612–624.

    Article  CAS  PubMed  Google Scholar 

  • Molinero, J. & J. Pozo, 2004. Impact of a eucalyptus (Eucalyptus globulus Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small stream. Hydrobiologia 528: 143–165.

    Article  CAS  Google Scholar 

  • Morley, S. A., M. M. Foley, J. J. Duda, M. M. Beirne, R. L. Paradis, R. C. Johnson & G. R. Pess, 2020. Shifting food web structure during dam removal—Disturbance and recovery during a major restoration action. PLoS One 15: e0239198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulholland, P. J. & W. R. Hill, 1997. Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: Separating catchment flow path and in-stream effects. Water Resources Research 33: 1297–1306.

    Article  CAS  Google Scholar 

  • Müller, R. & O. Wiedemann, 1955. Die bestimmung des nitrat-ions in Wasser. Von Wasser 22: 247–271.

    Google Scholar 

  • Muñoz-Mas, R., J. Sánchez-Hernández, M. E. McClain, R. Tamatamah, S. C. Mukama & F. Martínez-Capel, 2019. Investigating the influence of habitat structure and hydraulics on tropical macroinvertebrate communities. Ecohydrology & Hydrobiology 19: 339–350.

    Article  Google Scholar 

  • O’Callaghan, P., M. Kelly-Quinn, E. Jennings, P. Antunes, M. O’Sullivan, O. Fenton & D. O. Huallachain, 2019. The environmental impact of cattle access to watercourses: a review. Journal of Environmental Quality 48: 340–351.

    Article  CAS  PubMed  Google Scholar 

  • Ocon, C. S. & A. R. Capítulo, 2004. Presence and abundance of Ephemeroptera and other sensitive macroinvertebrates in relation with habitat conditions in Pampean streams (Buenos Aires, Argentina). Archiv Für Hydrobiologie 159: 473–487.

    Article  Google Scholar 

  • Ocón, C. & A. Rodríguez-Capítulo, 2012. Assessment of water quality in temperate-plain streams (Argentina, South America) using a multiple approach. Ecología Austral 22: 81–91.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, H. Wagner & M. J. Oksanen, 2013. Package ‘vegan.’ Community Ecology Package 2: 1–295.

    Google Scholar 

  • Pawson, S. M., A. Brin, E. G. Brockerhoff, D. Lamb, T. W. Payn, A. Paquette & J. A. Parrotta, 2013. Plantation forests, climate change and biodiversity. Biodiversity and Conservation 22: 1203–1227.

    Article  Google Scholar 

  • Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C.

  • Pozo, J., A. Basaguren, A. Elosegui, J. Molinero, E. Fabre & E. Chauvet, 1998. Afforestation with Eucalyptus globulus and leaf litter decomposition in streams of northern Spain. Hydrobiologia 373: 101–110.

    Article  Google Scholar 

  • R Development Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Ramírez, A. & P. E. Gutiérrez-Fonseca, 2014. Estudios sobre macroinvertebrados acuáticos en América Latina: avances recientes y direcciones futuras. Revista De Biología Tropical 62: 9–20.

    Article  PubMed  Google Scholar 

  • Rodrigues, M. E., F. de Oliveira Roque, J. M. O. Quintero, J. C. de Castro Pena, D. C. de Sousa & P. D. M. Junior, 2016. Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biological Conservation 194: 113–120.

    Article  Google Scholar 

  • Rodrigues, C. B., R. H. Taniwaki, P. Lane, W. D. P. Lima & S. F. D. B. Ferraz, 2019. Eucalyptus short-rotation management effects on nutrient and sediments in subtropical streams. Forests 10: 519.

    Article  Google Scholar 

  • Rodriguez Suarez, J. A., F. Diaz-Fierros, R. Perez & B. Soto, 2014. Assessing the influence of afforestation with Eucalyptus globulus on hydrological response from a small catchment in northwestern Spain using the HBV hydrological model. Hydrological Processes 28: 5561–5572.

    Article  Google Scholar 

  • Rodriguez-Capítulo, A., M. Tangorra & C. Ocón, 2001. Use of benthic macroinvertebrates to assess the biological status of Pampean streams in Argentina. Aquatic Ecology 35: 109–119.

    Article  Google Scholar 

  • Rodríguez-Capítulo, A. R., C. Ocón & M. Tangorra, 2003. Una visión bentónica de arroyos y ríos pampeanos. Biología Acuática 21: 1–18.

    Google Scholar 

  • Roldán-Pérez, G., 2016. Los macroinvertebrados como bioindicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y Latinoamérica. Revista De La Academia Colombiana De Ciencias Exactas, Físicas y Naturales 40: 254–274.

    Article  Google Scholar 

  • Rosa, B. J. F. V., L. F. T. Rodrigues, G. S. de Oliveira & R. da Gama Alves, 2014. Chironomidae and Oligochaeta for water quality evaluation in an urban river in southeastern Brazil. Environmental Monitoring and Assessment 186: 7771–7779.

    Article  CAS  PubMed  Google Scholar 

  • Ruaro, R., É. A. Gubiani, A. M. Cunico, J. Higuti, Y. Moretto & P. A. Piana, 2019. Unified multimetric index for the evaluation of the biological condition of streams in Southern Brazil based on fish and macroinvertebrate assemblages. Environmental Management 64: 661–673.

    Article  PubMed  Google Scholar 

  • Sabater, S, A. Elosegi & R. Ludwig, (Eds), 2019. Multiple Stressors in River Ecosystems. Status, Impacts and Prospects for the Future. Elsevier, Amsterdam.

  • Sánchez-Montoya, M. M., M. R. Vidal-Abarca & M. L. Suárez, 2010. Comparing the sensitivity of diverse macroinvertebrate metrics to a multiple stressor gradient in Mediterranean streams and its influence on the assessment of ecological status. Ecological Indicators 10: 896–904.

    Article  Google Scholar 

  • Schmera, D., J. Heino, J. Podani, T. Erős & S. Dolédec, 2017. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787: 27–44.

    Article  Google Scholar 

  • Schröder, N. M., C. G. Rippel, L. H. Walantus, P. D. Zapata & P. Pessacq, 2020. Odonata assemblages as indicators of stream condition-a test from northern Argentina. North-Western Journal of Zoology 16: 117–124.

    Google Scholar 

  • Segnini, S., 2003. El uso de los macroinvertebrados bentónicos como indicadores de la condición ecológica de los cuerpos de agua corriente. Ecotropicos 16: 45–63.

    Google Scholar 

  • Shah, N. W., B. R. Baillie, K. Bishop, S. Ferraz, L. Högbom & J. Nettles, 2022. The effects of forest management on water quality. Forest Ecology and Management 522: 120397.

    Article  Google Scholar 

  • Silsbee, D. G. & G. L. Larson, 1982. Water quality of streams in the Great Smoky Mountains National Park. Hydrobiologia 89(2): 97–115.

    Article  CAS  Google Scholar 

  • Silva, L. F., D. M. Castro, L. Juen, M. Callisto, R. M. Hughes & M. G. Hermes, 2021. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecological Indicators 133: 108367.

    Article  Google Scholar 

  • Silveira, L., P. Gamazo, J. Alonso & L. Martínez, 2016. Effects of afforestation on groundwater recharge and water budgets in the western region of Uruguay. Hydrological Processes 30: 3596–3608.

    Article  Google Scholar 

  • Soutullo, A., M. Ríos, N. Zaldúa & F. Teixeira-de-Mello, 2020. Soybean expansion and the challenge of the coexistence of agribusiness with local production and conservation initiatives: pesticides in a Ramsar site in Uruguay. Environmental Conservation 47: 97–103.

    Article  Google Scholar 

  • Strieder, M. N., L. H. Ronchi, C. Stenert, R. T. Scherer & U. G. Neiss, 2006. Medidas biológicas e índices de qualidade da água de uma microbacia com poluição urbana e de curtumes no sul do Brasil. Acta Biologica Leopondensia 28: 17–24.

    Google Scholar 

  • Suárez, B., M. Barrios & F. Teixeira de Mello, 2022. Macroinvertebrates’ response to different land use in lowland streams from Uruguay: use of artificial substrates for biomonitoring. Neotropical Biodiversity 8: 136–146.

    Article  Google Scholar 

  • Suriano, M. T. & A. A. Fonseca-Gessner, 2013. Structure of benthic macroinvertebrate assemblages on a gradient of environmental integrity in Neotropical streams. Acta Limnologica Brasiliensia 25: 418–428.

    Article  CAS  Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total N and total P in natural waters. Mar Chem 10: 109–122.

    Article  CAS  Google Scholar 

  • Villalobos-Jimenez, G., A. Dunn & C. Hassall, 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. European Journal of Entomology 113: 217–232.

    Article  Google Scholar 

  • Wagenhoff, A., A. Liess, A. Pastor, J. E. Clapcott, E. O. Goodwin & R. G. Young, 2017. Thresholds in ecosystem structural and functional responses to agricultural stressors can inform limit setting in streams. Freshwater Science 36: 178–194.

    Article  Google Scholar 

  • Wang, L., D. M. Robertson & P. J. Garrison, 2007. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: implication to nutrient criteria development. Environmental Management 39: 194–212.

    Article  PubMed  Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York:

    Book  Google Scholar 

  • Woodward, G., M. O. Gessner, P. S. Giller, V. Gulis, S. Hladyz, A. Lecerf, B. Malmqvist, B. G. McKie, S. D. Tiegs, & H. Cariss, 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336: 1438–1440.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. & X. Wang, 2021. Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Scientific Reports 11: 1–15.

    Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R Statistics for Biology and Health, Springer, New York:

    Book  Google Scholar 

  • Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank Martín Pacheco, Lucía Cabrera, and Viviana Franco for collaborating in the field and laboratory. We thank Claudia Fosalba for her collaboration in the water parameters analysis in the laboratory.

Funding

This work was supported by the ANII Fondo Sectorial de Innovación Industrial ANII-FSI I 2016 1–128679. Forestry Companies: UPM-FO, Montes del Plata, Forestal Atlántico Sur. Project “Multiscale environmental indicators of afforestation in Uruguay”. Universidad de la República, Facultad de Ingeniería, Facultad de Agronomía, CURE, CENUR-LN. FTM and MM are supported by SIN-ANII (Sistema Nacional de Investigadores) and PEDECIBA “Geociencias and Biología” (Programa de Desarrollo de las Ciencias Básicas). M. Barrios is supported by the doctoral scholarship of the SNB-ANII (Sistema Nacional de Becas de la Agencia Nacional de Investigación e Innovación) and Beca de finalización de Doctorado Comisión Académica de Postgrado, UdelaR. BRT is supported by Universidad de Las Américas, project AMB.BRT.22.01.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MBG, FTM, BRT, MM; conduction of the research: MBG, FTM, MB, GT, BS, JA; statistical analyses MBG, writing-original draft preparation MBG, writing-review editing MBG, FTM, BRT, GT, MB, MM, JA, BS; supervision, FTM, BRT; funding acquisition JA, MM, FTM. All authors have read and agreed to publish this version of the manuscript.

Corresponding author

Correspondence to Margenny Barrios.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

No approval from ethics committees was required to accomplish the goals of this study because research work was conducted with unregulated invertebrate taxa.

Consent to participate

All authors consent to publish this research.

Consent for publication

No applicable.

Additional information

Handling editor: Sidinei M. Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Luiz Ubiratan Hepp, Frank Onderi Masese & Franco Teixeira de Mello / Stream Ecology and Environmental Gradients

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1976 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrios, M., Tesitore, G., Burwood, M. et al. Environmental and aquatic macroinvertebrates metrics respond to the Eucalyptus afforestation gradient in subtropical lowland streams. Hydrobiologia 851, 343–365 (2024). https://doi.org/10.1007/s10750-023-05248-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05248-w

Keywords

Navigation