Skip to main content

Advertisement

Log in

Combining fine-scale telemetry and hydraulic numerical modelling to understand the behavioural tactics and the migration route choice of smolts at a complex hydropower plant

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mitigation measures for downstream migratory Atlantic salmon smolts (Salmo salar L.) at migration barriers usually turn out to be insufficient to enable safe and quick passage, probably due to a lack of knowledge about their behavioural responses. Combining manual 2D tracking with hydrodynamic modelling has been rarely performed but might be useful to highlight environmental factors influencing smolt behavioural tactics and the choice of a migration route. We investigated the smolt downstream migration at a hydropower plant that offers five migration routes, including a Kaplan turbine and a fish-friendly Archimedes screw. Four behavioural tactics were defined to describe the smolt expressed behaviour, which was mainly complex and hesitant. The majority of the smolts approached more than one migration route before crossing the site and the Kaplan turbine turned out to be the most approached route, contrary to the Archimedes screw. Hydrodynamic modelling highlighted that flow velocity and water depth were used as hydraulic cues in the selection of a migration route, as the smolts preferred higher flow velocities and water depths. The comprehension of the factors influencing the research behaviour at hydropower plants may be useful to design attractive mitigation measures and to guide the smolts efficiently towards safe routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ben Jebria, N., R. Carmigniani, H. Drouineau, E. De Oliveira, S. Tétard & H. Capra, 2021. Coupling 3D hydraulic simulation and fish telemetry data to characterize the behaviour of migrating smolts approaching a bypass. Journal of Ecohydraulics. https://doi.org/10.1080/24705357.2021.1978345.

    Article  Google Scholar 

  • Brackley, R., M. C. Lucas, R. Thomas, C. E. Adams & C. W. Bean, 2018. Comparison of damage to live v. euthanized Atlantic salmon Salmo salar smolts from passage through an Archimedean screw turbine. Journal of Fish Biology 92: 1635–1644. https://doi.org/10.1111/jfb.13596.

    Article  CAS  PubMed  Google Scholar 

  • Calles, O. & L. Greenberg, 2009. Connectivity is a two-way street. The need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25: 1268–1286. https://doi.org/10.1002/rra.1228.

    Article  Google Scholar 

  • Cefas, A., 2012. Assessment of Damage to Smolts Caused by Archimedes Screw Hydropower Turbines. T. R. I. Potter, P. Davison and A. Moore, Lowestoft.

  • Celestino, L. F., F. J. Sanz-Ronda, L. E. Miranda, M. C. Makrakis, J. H. P. Dias & S. Makrakis, 2019. Bidirectional connectivity via fish ladders in a large Neotropical river. River Research and Applications 35: 236–246. https://doi.org/10.1002/rra.3404.

    Article  Google Scholar 

  • Coutant, C. C. & R. R. Whitney, 2000. Fish behavior in relation to passage through hydropower turbines: a review. Transactions of the American Fisheries Society 129: 351–380. https://doi.org/10.1577/1548-8659(2000)129%3c0351:FBIRTP%3e2.0.CO;2.

    Article  Google Scholar 

  • Enders, E. C., M. H. Gessel & J. G. Williams, 2009. Development of successful fish passage structures for downstream migrants requires knowledge of their behavioural response to accelerating flow. Canadian Journal of Fisheries and Aquatic Sciences 66: 2109–2117. https://doi.org/10.1139/F09-141.

    Article  Google Scholar 

  • Erpicum, S., T. Meile, B. Dewals, M. Pirotton & A. Schleiss, 2009. 2D numerical flow modelling in a macro-rough channel. International Journal for Numerical Methods in Fluids 61: 1227–1246.

    Article  Google Scholar 

  • Erpicum, S., B. Dewals, P. Archambeau & M. Pirotton, 2010. Dam-break flow computation based on an efficient flux-vector splitting. Journal of Computational and Applied Mathematics. https://doi.org/10.1016/j.cam.2009.08.110.

    Article  Google Scholar 

  • Erpicum, S., B. Dewals, P. Archambeau, S. Detrembleur & M. Pirotton, 2010b. Detailed inundation modelling using high resolution DEMs. Engineering Applications of Computational Fluid Mechanics 2: 196–208. https://doi.org/10.1080/19942060.2010.11015310.

    Article  Google Scholar 

  • Fjeldstad, H.-P., U. Pulg & T. Forseth, 2018. Safe two-way migration for salmonids and eel past hydropower structures in Europe: a review and recommendations for best-practice solutions. Marine and Freshwater Research 69: 1834. https://doi.org/10.1071/MF18120.

    Article  Google Scholar 

  • Fu, T., Z. D. Deng, J. P. Duncan, D. Zhou, T. J. Carlson, G. E. Johnson & H. Hou, 2016. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renewable Energy 99: 1244–1252. https://doi.org/10.1016/j.renene.2016.08.029.

    Article  Google Scholar 

  • Furey, N. B., E. G. Martins & S. G. Hinch, 2021. Migratory salmon smolts exhibit consistent interannual depensatory predator swamping: Effects on telemetry-based survival estimates. Ecology of Freshwater Fish 30: 18–30. https://doi.org/10.1111/eff.12556.

    Article  Google Scholar 

  • Gutfreund, C., S. Makrakis, T. Castro-Santos, L. F. Celestino, J. H. P. Dias & M. C. Makrakis, 2018. Effectiveness of a fish ladder for two Neotropical migratory species in the Paraná River. Marine and Freshwater Research 69: 1848–1856. https://doi.org/10.1071/MF18129.

    Article  Google Scholar 

  • Haraldstad, T., T. O. Haugen, F. Kroglund, E. M. Olsen & E. Höglund, 2019. Migratory passage structures at hydropower plants as potential physiological and behavioural selective agents. Royal Society Open Science 6: 190989. https://doi.org/10.1098/rsos.190989.

    Article  PubMed  PubMed Central  Google Scholar 

  • Havn, T. B., S. A. Sæther, E. B. Thorstad, M. A. K. Teichert, L. Heermann, O. H. Diserud, J. Borcherding, M. Tambets & F. Økland, 2017. Downstream migration of Atlantic salmon smolts past a low head hydropower station equippped with Archimedes screw and Francis turbines. Ecological Engineering 105: 262–275. https://doi.org/10.1016/j.ecoleng.2017.04.043.

    Article  Google Scholar 

  • Havn, T. B., E. B. Thorstad, J. Borcherding, L. Heermann, M. A. K. Teichert, D. Ingendahl, M. Tambets, S. A. Sæther & F. Økland, 2020. Impacts of a weir and power station on downstream migrating Atlantic salmon smolts in a German river. River Research and Applications 36: 784–796. https://doi.org/10.1002/rra.3590.

    Article  Google Scholar 

  • Havn, T. B., E. B. Thorstad, M. A. K. Teichert, S. A. Sæther, L. Heermann, R. D. Hedger & F. Økland, 2018. Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine. Hydrobiologia 805: 273–290. https://doi.org/10.1007/s10750-017-3311-3.

    Article  Google Scholar 

  • Hvidsten, N. A., A. J. Jensen, H. Vivas & Q. Bakke, 1995. Downstream migration of Atlantic Salmon Smolts in relation to water flow, water temperature, moon phase and social. Nordic Journal of Freshwater Research 70: 38–48.

    Google Scholar 

  • Hogan, T. W., G. F. Cada & S. V. Amaral, 2014. The status of environmentally enhanced hydropower turbines. Fisheries 39: 164–172. https://doi.org/10.1080/03632415.2014.897195.

    Article  Google Scholar 

  • Honkanen, H. M., D. L. Orrell, M. Newton, S. McKelvey, A. Stephen, R. A. Duguid & C. E. Adams, 2021. The downstream migration success of Atlantic salmon (Salmo salar) smolts through natural and impounded standing waters. Ecological Engineering 161: 106161. https://doi.org/10.1016/j.ecoleng.2021.106161.

    Article  Google Scholar 

  • Huet, M., 1949. Aperçu des relations entre la pente et les populations piscicoles des eaux courantes. Schweiz. z. Hydrol. 11: 332–351.

    Google Scholar 

  • Kärgenberg, E., E. B. Thorstad, R. Järvekülg, O. T. Sandlund, E. Saadre, F. Økland & M. Tambets, 2020. Behaviour and mortality of downstream migrating Atlantic salmon smolts at a small power station with multiple migration routes. Fisheries Management and Ecology 27: 32–40. https://doi.org/10.1111/fme.12382.

    Article  Google Scholar 

  • Karppinen, P., M. Hynninen, T. Vehanen & J. P. Vähä, 2021. Variations in migration behaviour and mortality of Atlantic salmon smolts in four different hydroelectric facilities. Fisheries Management and Ecology 28: 253–267. https://doi.org/10.1111/fme.12486.

    Article  Google Scholar 

  • Karppinen, P., P. Jounela, R. Huusko & J. Erkinaro, 2014. Effects of release timing on migration behaviour and survival of hatchery-reared Atlantic salmon smolts in a regulated river. Ecology of Freshwater Fish 23: 438–452. https://doi.org/10.1111/eff.12097.

    Article  Google Scholar 

  • Katopodis, C. & J. G. Williams, 2012. The development of fish passage research in a historical context. Ecological Engineering 48: 8–18. https://doi.org/10.1016/j.ecoleng.2011.07.004.

    Article  Google Scholar 

  • Kerr, J. R. & P. S. Kemp, 2019. Masking a fish’s detection of environmental stimuli: application to improving downstream migration at river infrastructure. Journal of Fish Biology 95: 228–237. https://doi.org/10.1111/jfb.13812.

    Article  PubMed  Google Scholar 

  • Klopries, E. M., Z. D. Deng, T. U. Lachmann, H. Schüttrumpf & B. A. Trumbo, 2018. Surface bypass as a means of protecting downstream-migrating fish: lack of standardised evaluation criteria complicates evaluation of efficacy. Marine and Freshwater Research 69: 1882–1893. https://doi.org/10.1071/MF18097.

    Article  Google Scholar 

  • Larinier, M. & D. Couret, 2008. Guide pour la conception de prises d’eau « ichtyocompatibles » pour les petites centrales hydroélectriques. Rapport GHAAPPE RA 08: 4.

    Google Scholar 

  • Li, X., S. Erpicum, E. Mignot, P. Archambeau, M. Pirotton & B. Dewals, 2021. Influence of urban forms on long-duration urban flooding: laboratory experiments and computational analysis. Journal of Hydrology 603: 127034. https://doi.org/10.1016/j.jhydrol.2021.127034.

    Article  Google Scholar 

  • Lothian, A. J., M. Newton, J. Barry, M. Walters, R. C. Miller & C. E. Adams, 2018. Migration pathways, speed and mortality of Atlantic salmon (Salmo salar) smolts in a Scottish river and the near-shore coastal marine environment. Ecology of Freshwater Fish 27: 549–558. https://doi.org/10.1111/eff.12369.

    Article  Google Scholar 

  • Lothian, A. J., & M. C. Lucas, 2021. The role of individual behavioral traits on fishway passage attempt behavior. Ecology and Evolution 11(17): 11974–11990. https://doi.org/10.1002/ece3.7964.

  • Marschall, E. A., M. E. Mather, D. L. Parrish, G. W. Allison & J. R. McMenemy, 2011. Migration delays caused by anthropogenic barriers: Modeling dams, temperature, and success of migrating salmon smolts. Ecological Applications 21: 3014–3031. https://doi.org/10.1890/10-0593.1.

    Article  Google Scholar 

  • McCormick, S. D., L. P. Hansen, T. P. Quinn & R. L. Saunders, 1998. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 55: 77–92. https://doi.org/10.1139/d98-011.

    Article  Google Scholar 

  • Molina-Moctezuma, A., E. Peterson & J. D. Zydlewski, 2021. Movement, survival, and delays of Atlantic salmon smolts in the Piscataquis River, Maine, USA. Transactions of the American Fisheries Society 150: 345–360. https://doi.org/10.1002/tafs.10289.

    Article  Google Scholar 

  • Moore, A., L. Privitera, M. J. Ives, J. Uzyczak & W. R. C. Beaumont, 2018. The effects of a small hydropower scheme on the migratory behaviour of Atlantic salmon Salmo salar smolts. Journal of Fish Biology 93: 469–476. https://doi.org/10.1111/jfb.13660.

    Article  CAS  PubMed  Google Scholar 

  • Newton, M., J. Barry, J. A. Dodd, M. C. Lucas, P. Boylan & C. E. Adams, 2019. A test of the cumulative effect of river weirs on downstream migration success, speed and mortality of Atlantic salmon (Salmo salar) smolts: an empirical study. Ecology of Freshwater Fish 28: 176–186. https://doi.org/10.1111/eff.12441.

    Article  Google Scholar 

  • Nilsson, C., 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408. https://doi.org/10.1126/science.1107887.

    Article  CAS  PubMed  Google Scholar 

  • Nyqvist, D., L. A. Greenberg, E. Goerig, O. Calles, E. Bergman, W. R. Ardren & T. Castro-Santos, 2017. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydropower dam. Ecology of Freshwater Fish 26: 707–718. https://doi.org/10.1111/eff.12318.

    Article  Google Scholar 

  • Nyqvist, D., J. Elghagen, M. Heiss & O. Calles, 2018. An angled rack with a bypass and a nature-like fishway pass Atlantic salmon smolts downstream at a hydropower dam. Marine and Freshwater Research 69: 1894–1904. https://doi.org/10.1071/MF18065.

    Article  Google Scholar 

  • Ovidio, M., E. Baras, D. Goffaux, C. Birtles & J. C. Philippart, 1998. Environmental unpredictability rules the autumn migration of brown trout (Salmo trutta L.) in the Belgian Ardennes. Hydrobiologia 371: 263–274. https://doi.org/10.1007/978-94-011-5090-3_30.

    Article  Google Scholar 

  • Ovidio, M., H. Capra & J. C. Philippart, 2007. Field protocol for assessing small obstacles to migration of brown trout Salmo trutta, and European grayling Thymallus thymallus: a contribution to the management of free movement in rivers. Fisheries Management and Ecology 14: 41–50. https://doi.org/10.1111/j.1365-2400.2006.00522.x.

    Article  Google Scholar 

  • Ovidio, M., A. Dierckx, S. Bunel, L. Grandry, C. Spronck & J. P. Benitez, 2017. Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system. River Research and Applications 33: 27–36. https://doi.org/10.1002/rra.3062.

    Article  Google Scholar 

  • Ovidio, M., S. Renardy, A. Dierckx, B. Nzau Matondo & J. P. Benitez, 2021. Improving bypass performance and passage success of Atlantic salmon smolts at an old fish-hostile hydroelectric power station: A challenging task. Ecological Engineering 160: 106148. https://doi.org/10.1016/j.ecoleng.2021.106148.

    Article  Google Scholar 

  • Parrish, D. L., R. J. Behnke, S. R. Gephard, S. D. McCormick & G. H. Reeves, 1998. Why aren’t there more Atlantic salmon (Salmo salar)? Canadian Journal of Fisheries and Aquatic Sciences 55: 281–287. https://doi.org/10.1139/d98-012.

    Article  Google Scholar 

  • Pauwels, I. S., R. Baeyens, G. Toming, M. Schneider, D. Buysse, J. Coeck & J. A. Tuhtan, 2020. Multi-species assessment of injury, mortality, and physical conditions during downstream passage through a large Archimedes hydrodynamic screw (Albert Canal, Belgium). Sustainability 12: 8722. https://doi.org/10.3390/su12208722.

    Article  Google Scholar 

  • Persson, L., A. Kagervall, K. Leonardsson, M. Royan & A. Alanärä, 2019. The effect of physiological and environmental conditions on smolt migration in Atlantic salmon Salmo salar. Ecology of Freshwater Fish 28: 190–199. https://doi.org/10.1111/eff.12442.

    Article  Google Scholar 

  • Piccolo, J. J., N. F. Hughes & M. D. Bryant, 2008. Water velocity influences prey detection and capture by drift-feeding juvenile coho salmon (Oncorhynchus kisutch) and steelhead (Oncorhynchus mykiss irideus). Canadian Journal of Fisheries and Aquatic Sciences 65: 266–275. https://doi.org/10.1139/f07-172.

    Article  Google Scholar 

  • Renardy, S., J. P. Benitez, A. Tauzin, A. Dierckx, B. Nzau Matondo & M. Ovidio, 2020. How and where to pass? Atlantic salmon smolt’s behaviour at a hydropower station offering multiple migration routes. Hydrobiologia 847: 469–485. https://doi.org/10.1007/s10750-019-04108-w.

    Article  Google Scholar 

  • Renardy, S., D. Colson, J. P. Benitez, A. Dierckx, D. Goffaux, J. Sabbe, A. Rabouan, O. Detrait, B. Nzau Matondo & M. Ovidio, 2022. Migration behaviour of Atlantic salmon smolts (Salmo salar L.) in a short and highly fragmented gravel-bed river stretch. Ecology of Freshwater Fish 31: 499–514. https://doi.org/10.1111/eff.12646.

    Article  Google Scholar 

  • Renardy, S., A. Takriet, J. P. Benitez, A. Dierckx, R. Baeyens, J. Coeck, I. S. Pauwels, A. Mouton, P. Archambeau, B. Dewals, M. Pirotton, S. Erpicum & M. Ovidio, 2021. Trying to choose the less bad route: Individual migratory behaviour of Atlantic salmon smolts (Salmo salar L.) approaching a bifurcation between a hydropower station and a navigation canal. Ecological Engineering 169: 106304. https://doi.org/10.1016/j.ecoleng.2021.106304.

    Article  Google Scholar 

  • Sanz-Ronda, F. J., J. F. Fuentes-Pérez, A. García-Vega & F. J. Bravo-Córdoba, 2021. Fishways as downstream routes in small hydropower plants: experiences with a potamodromous cyprinid. Water 13: 1041. https://doi.org/10.3390/w13081041.

    Article  Google Scholar 

  • Scruton, D. A., R. S. McKinley, N. Kouwen, W. Eddy & R. K. Booth, 2003. Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Research and Applications 19: 605–617. https://doi.org/10.1002/rra.735.

    Article  Google Scholar 

  • Scruton, D. A., C. J. Pennell, C. E. Bourgeois, R. F. Goosney, L. King, R. K. Booth & K. D. Clarke, 2008. Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada. Hydrobiologia 609: 225–239. https://doi.org/10.1007/s10750-008-9410-4.

    Article  Google Scholar 

  • Silva, A. T., K. M. Bærum, R. D. Hedger, H. Baktoft, H. P. Fjeldstad, K. Ø. Gjelland & T. Forseth, 2020. The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Science of the Total Environment 705: 5773. https://doi.org/10.1016/j.scitotenv.2019.135773.

    Article  CAS  Google Scholar 

  • Szabo-Meszaros, M., T. Forseth, H. Baktoft, H. Fjeldstad, A. T. Silva, K. Ø. Gjelland, F. Økland, I. Uglem & K. Alfredsen, 2019. Modelling mitigation measures for smolt migration at dammed river sections. Ecohydrology. https://doi.org/10.1002/eco.2131.

    Article  Google Scholar 

  • Svendsen, J. C., K. Aarestrup, H. Malte, U. H. Thygesen, H. Baktoft, A. Koed, M. G. Deacon, K. F. Cubitt & R. S. McKinley, 2011. Linking individual behaviour and migration success in Salmo Salar smolts approaching a water withdrawal site: implications for management. Aquatic Living Resources 24: 201–209. https://doi.org/10.1051/alr/2011121.

    Article  Google Scholar 

  • Teichert, N., J. P. Benitez, A. Dierckx, S. Tétard, E. de Oliveira, T. Trancart, E. Feunteun & M. Ovidio, 2020. Development of an accurate model to predict the phenology of Atlantic salmon smolt spring migration. Aquatic Conservation: Marine and Freshwater Ecosystems 30: 1552–1565. https://doi.org/10.1002/aqc.3382.

    Article  Google Scholar 

  • Thorstad, E. B., T. B. Havn, S. A. Saether, L. Heermann, M. A. K. Teichert, O. H. Diserud, M. Tambets, J. Borcherding & F. Økland, 2017. Survival and behaviour of Atlantic salmon smolts passing a run-of-river hydropower facility with a movable bulb turbine. Fisheries Management and Ecology 24: 199–207. https://doi.org/10.1111/fme.12216.

    Article  Google Scholar 

  • Thorstad, E. B., F. Whoriskey, I. Uglem, A. Moore, A. H. Rikardsen & B. Finstad, 2012. A critical life stage of the Atlantic salmon Salmo salar: Behaviour and survival during the smolt and initial post-smolt migration. Journal of Fish Biology 81: 500–542. https://doi.org/10.1111/j.1095-8649.2012.03370.x.

    Article  CAS  PubMed  Google Scholar 

  • Tomanova, S., D. Courret, A. Alric, E. De Oliveira, T. Lagarrigue & S. Tétard, 2018. Protecting efficiently sea-migrating salmon smolts from entering hydropower plant turbines with inclined or oriented low bar spacing racks. Ecological Engineering 122: 143–152. https://doi.org/10.1016/j.ecoleng.2018.07.034.

    Article  Google Scholar 

  • Tomanova, S., D. Courret, S. Richard, P. A. Tedesco, V. Mataix, A. Frey, T. Lagarrigue, L. Chatellier & S. Tétard, 2021. Protecting the downstream migration of salmon smolts from hydroelectric power plants with inclined racks and optimized bypass water discharge. Journal of Environmental Management 284: 112012. https://doi.org/10.1016/j.jenvman.2021.112012.

    Article  PubMed  Google Scholar 

  • Vergeynst, J., 2018. Fish behaviour in the vicinity of a navigation lock complex: the challenges, Daniel Bung, Blake Tullis, 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15–18 May. https://doi.org/10.15142/T3S35D(978-0-692-13277-7).

  • Williams, J. G., G. Armstrong, C. Katopodis, M. Larinier & F. Travade, 2012. Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions. River Research and Applications 28: 407–417. https://doi.org/10.1002/rra.1551.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the Public Service of Wallonia,  DNF (Département de la nature et des forêts - Service de la Pêche). Séverine Renardy received a Ph.D. research grant from FNRS-FRIA (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture) for a project on the smolt downstream migration. We thank Niels Duchesne for authorising access to the hydropower plant during the study and the SPW (Public Service of Wallonia) SETHY for the water discharge data. We thank the team of the CoSMos hatchery of Erezée for the acquisition of Atlantic salmon smolts. We thank the Geomatics unit of ULiege for lending the topographic survey devices.

Funding

Financial support for this study was provided by the Public Service of Wallonia, DNF (Département de la nature et des forêts - Service de la Pêche). Séverine Renardy received a Ph.D. research grant from FNRS-FRIA (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture) for a project on the smolt downstream migration.

Author information

Authors and Affiliations

Authors

Contributions

Writing of the paper: SR, UDC and MO. Conceived and designed the investigation: SR, JPB and MO. Performed field and/or laboratory work: SR, JPB, AD, PA, SE and MO. Analysed the data: SR, UDC, MO, SE and JPB. Contributed materials, reagents and/or analysis tools: MO, PA and SE. Paper proofreading: JPB, MO, SE and MP.

Corresponding author

Correspondence to Séverine Renardy.

Ethics declarations

Competing Interests

The authors have no competing interests to declare.

Additional information

Handling editor: Michael Power

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renardy, S., Ciraane, U.D., Benitez, JP. et al. Combining fine-scale telemetry and hydraulic numerical modelling to understand the behavioural tactics and the migration route choice of smolts at a complex hydropower plant. Hydrobiologia 850, 3091–3111 (2023). https://doi.org/10.1007/s10750-023-05237-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05237-z

Keywords

Navigation