Skip to main content

Advertisement

Log in

Impoverished fish assemblages of temperate Neotropical streams respond to environmental degradation and support a sensitive Index of Biotic Integrity

  • STREAM ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fish as bioindicators are a widely used tool for environmental monitoring of freshwater ecosystems worldwide. However, its adaptation to temperate Neotropical streams constitutes a challenge due to the presence of pauperised ichthyofauna with high tolerance to environmental degradation. We designed, evaluated, and validated an Index of Biotic Integrity (IBI) that uses fish as bioindicators of the ecological integrity of streams of the Pampa Plain, Argentina. An integral characterization of the environmental conditions (water quality, habitat structure, and riparian condition) and fish assemblages were performed in 17 study sites (natural grasslands, urban, and livestock reaches). The IBI was designed with 10 metrics and showed to be sensitive to different environmental conditions due to significant differences between study sites and land uses. The IBI also showed to be responsive due to its significant associations with water quality, habitat structure variables, and some multimetric indexes. Moreover, when validated against a recently fish database, it demonstrated to be sensitive for use in other temperate streams exposed to similar environmental conditions. An integral environmental assessment as the one designed can lead to optimized strategies for the management and conservation of these fragile ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122.

    Article  Google Scholar 

  • American Public Health Association, American Water Works Association, Water Pollution Control Federation & Water Environment Federation (APHA, AWWA, WPCF & WEF), 2017. Standard Methods for the Examination of Water and Wastewater, 23rd ed. American Public Health Association, Washington, United States: 1546.

    Google Scholar 

  • Angermeier, P. & J. Karr, 1986. Applying an index of biotic integrity based on stream-fish communities: considerations in sampling and interpretation. North American Journal of Fisheries Management 6: 418–429. https://doi.org/10.1577/1548-8659(1986)6%3c418:AAIOBI%3e2.0.CO;2.

    Article  Google Scholar 

  • Araújo, F. G., 1998. Adaptação do índice de integridade biótica usando a comunidade de peixes para o rio Paraíba do Sul. Revista Brasileira De Biologia 58: 547–558. https://doi.org/10.1590/S0034-71081998000400002.

    Article  Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Environmental Protection Agency, Washington, United States:, 339.

    Google Scholar 

  • Basílico, G. O., L. De Cabo & A. Faggi, 2015. Adaptación de índices de calidad de agua y de riberas para la evaluación ambiental en dos arroyos de la llanura pampeana. Revista Del Museo Argentino De Ciencias Naturales Nueva Serie 17: 119–134.

    Article  Google Scholar 

  • Benine, R. C., T. C. Mariguela & C. Oliveira, 2009. New species of Moenkhausia Eigenmann, 1903 (Characiformes: Characidae) with comments on the Moenkhausia oligolepis species complex. Neotropical Ichthyology 7: 161–168. https://doi.org/10.1590/S1679-62252009000200005.

    Article  Google Scholar 

  • Berón, L., 1984. Evaluación de la Calidad de las Aguas de los ríos de La Plata y Matanza-Riachuelo, mediante la utilización de índices de calidad de agua. Ministerio de Salud y Acción Social, Ciudad Autónoma de Buenos Aires, Argentina:, 38.

    Google Scholar 

  • Bertora, A., F. Grosman, P. Sanzano & J. J. Rosso, 2018. Composición y estructura de los ensambles de peces en un arroyo pampeano con uso de suelo contrastante. Revista Del Museo Argentino De Ciencias Naturales Nueva Serie 20: 11–22.

    Article  Google Scholar 

  • Bertora, A., F. Grosman, P. Sanzano & J. J. Rosso, 2021. Longitudinal patterns of native and alien fish species in a regulated temperate Neotropical river. Acta Limnologica Brasiliensia 33: e2. https://doi.org/10.1590/S2179-975X11519.

    Article  Google Scholar 

  • Bertora, A., F. Grosman, P. Sanzano & J. J. Rosso, 2022a. Fish assemblage structure in a Neotropical urbanized prairie stream exposed to multiple natural and anthropic factors. Ecology of Freshwater Fish 31: 224–242. https://doi.org/10.1111/eff.12625.

    Article  Google Scholar 

  • Bertora, A., F. Grosman, P. Sanzano & J. J. Rosso, 2022b. Combined effects of urbanization and longitudinal disruptions in riparian and in-stream habitat on water quality of a prairie stream. Knowledge and Management of Aquatic Ecosystems 423: 15. https://doi.org/10.1051/kmae/2022015.

    Article  Google Scholar 

  • Bistoni, M. A. & A. Hued, 2002. Patterns of fish species richness in rivers of the central region of Argentina. Brazilian Journal of Biology 62: 753–764. https://doi.org/10.1590/S1519-69842002000500004.

    Article  CAS  Google Scholar 

  • Bistoni, M. A., A. Hued, M. Videla & L. Sagretti, 1999. Efectos de la calidad del agua sobre las comunidades ícticas de la región central de Argentina. Revista Chilena De Historia Natural 72: 325–335.

    Google Scholar 

  • Boët, P., J. Belliard, R. Berrebidit-Thomas & E. Tales, 1999. Multiple human impacts by the City of Paris on fish communities in the Seine river basin, France. Hydrobiologia 410: 59–68. https://doi.org/10.1023/A:1003747528595.

    Article  Google Scholar 

  • Bojsen, B. H. & R. Barriga, 2002. Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshwater Biology 47: 2246–2260. https://doi.org/10.1046/j.1365-2427.2002.00956.x.

    Article  Google Scholar 

  • Borja, A., 2005. The European water framework directive: a challenge for nearshore, coastal and continental shelf research. Continental Shelf Research 25: 1768–1783. https://doi.org/10.1016/j.csr.2005.05.004.

    Article  Google Scholar 

  • Bozzetti, M. & U. H. Schulz, 2004. An index of biotic integrity based on fish assemblages for subtropical streams in southern Brazil. Hydrobiologia 529: 133–144. https://doi.org/10.1007/s10750-004-5738-6.

    Article  Google Scholar 

  • Butcher, R. W., 1947. Studies in the ecology of rivers: VII. The algae of organically enriched waters. Journal of Ecology 35: 186–191. https://doi.org/10.2307/2256507.

    Article  Google Scholar 

  • Cardoso, Y. P., J. J. Rosso, E. Mabragaña, M. González-Castro, M. Delpiani, E. Avigliano, S. Bogan, R. Covain, N. F. Schenone & J. M. Díaz de Astarloa, 2018. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS One 13: e0202024. https://doi.org/10.1371/journal.pone.0202024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casatti, L., 2002. Alimentação dos peixes em um riacho do Parque Estadual Morro do Diabo, bacia do Alto Rio Paraná, sudeste do Brasil. Biota Neotropica 2: 1–14. https://doi.org/10.1590/S1676-06032002000200012.

    Article  Google Scholar 

  • Casatti, L. & C. Ortigossa, 2021. Avaliação da integridade biótica de riachos a partir da ictiofauna. Oecologia Australis 25: 545. https://doi.org/10.4257/oeco.2021.2502.19.

    Article  Google Scholar 

  • Casatti, L. & R. M. C. Castro, 1998. A fish community of the São Francisco River headwaters riffles, southeastern Brazil. Ichthyological Exploration of Freshwaters 9: 229–242.

    Google Scholar 

  • Casatti, L. & R. M. C. Castro, 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4: 203–214. https://doi.org/10.1590/S1679-62252006000200006.

    Article  Google Scholar 

  • Casatti, L., F. Langeani & C. P. Ferreira, 2006. Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environmental Management 38: 974–982. https://doi.org/10.1007/s00267-005-0212-4.

    Article  PubMed  Google Scholar 

  • Cetra, M. & M. Petrere, 2007. Associations between fish assemblage and riparian vegetation in the Corumbataí River basin (SP). Brazilian Journal of Biology 67: 191–195. https://doi.org/10.1590/S1519-69842007000200002.

    Article  CAS  Google Scholar 

  • Chalar, G., L. Delbene, I. González-Bergonzoni & R. Arocena, 2013. Fish assemblage changes along a trophic gradient induced by agricultural activities (Santa Lucía, Uruguay). Ecological Indicators 24: 582–588. https://doi.org/10.1016/j.ecolind.2012.08.010.

    Article  Google Scholar 

  • Cochero, J., A. Cortelezzi, A. S. Tarda & N. Gómez, 2016. An index to evaluate the fluvial habitat degradation in lowland urban streams. Ecological Indicators 71: 134–144. https://doi.org/10.1016/j.ecolind.2016.06.058.

    Article  CAS  Google Scholar 

  • Cruz, B. B., L. E. Miranda & M. Cetra, 2013. Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil. Ecology of Freshwater Fish 22: 607–616. https://doi.org/10.1111/eff.12065.

    Article  Google Scholar 

  • Da Silveira, E. L., E. L. C. Ballester, K. A. D. Costa, E. W. Scheffer & A. M. Vaz-dos-Santos, 2018. Fish community response to environmental variations in an impacted Neotropical basin. Ecology of Freshwater Fish 27: 1126–1139. https://doi.org/10.1111/eff.12420.

    Article  Google Scholar 

  • Dala-Corte, R. B., F. G. Becker & A. S. Melo, 2016. Riparian integrity affects diet and intestinal length of a generalist fish species. Marine and Freshwater Research 68: 1272–1281. https://doi.org/10.1071/MF16167.

    Article  Google Scholar 

  • Debels, P., R. Figueroa, R. Urrutia, R. Barra & X. Niell, 2005. Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified water quality index. Environmental Monitoring and Assessment 110: 301–322. https://doi.org/10.1007/s10661-005-8064-1.

    Article  CAS  PubMed  Google Scholar 

  • Domínguez, E. & A. Giorgi, 2020. Los indicadores biológicos como herramientas de gestión de la calidad del agua. In Domínguez, E., A. Giorgi & N. Gómez (eds), La bioindicación en el monitoreo y evaluación de los sistemas fluviales de la Argentina EUDEBA Ciudad Autónoma de Buenos Aires, Argentina: 19–26.

    Google Scholar 

  • Domínguez, E., A. Encalada, H. R. Fernández, A. Giorgi, M. Marchese, M. L. Miserendino, A. Munné, N. Prat, B. Ríos-Touma & A. R. Rodrígues Capítulo, 2021. Biomonitoreo en ríos de la Argentina: un camino por recorrer. Ecología Austral 31: 195–296. https://doi.org/10.25260/EA.22.32.1.1.1212.

    Article  Google Scholar 

  • FAME consortium, 2005. Manual for the application of the European Fish Index–EFI. A fish-based method to assess the ecological status of European rivers in support of the Water Framework Directive. FAME, Belgium pp. 92.

  • Fausch, K. D., J. Lyons, J. R. Karr & P. L. Angermeier, 1990. Fish communities as indicators of environmental degradation. American Fisheries Society Symposium 8: 123–144.

    Google Scholar 

  • Feijoó, C. S. & R. Lombardo, 2007. Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research 41: 1399–1410. https://doi.org/10.1016/j.watres.2006.08.026.

    Article  CAS  PubMed  Google Scholar 

  • Feijoó, C. S., A. Giorgi, M. E. García & F. Momo, 1999. Temporal and spatial variability in streams of a pampean basin. Hydrobiologia 394: 41–52. https://doi.org/10.1023/A:1003583418401.

    Article  Google Scholar 

  • Feijoó, C. S., P. Gantes, A. Giorgi, J. J. Rosso & E. Zunino, 2012. Valoración de la calidad de ribera en un arroyo pampeano y su relación con las comunidades de macrófitas y peces. Biología Acuática 27: 113–128.

    Google Scholar 

  • Feio, M. J., R. M. Hughes, M. Callisto, S. J. Nichols, O. N. Odume, B. R. Quintella, M. Kuemmerlen, F. C. Aguiar, S. F. P. Almeida, P. Alonso-EguíaLis, F. O. Arimoro, F. J. Dyer, J. S. Harding, S. Jang, P. R. Kaufmann, S. Lee, J. Li, D. R. Macedo, A. Mendes, N. Mercado-Silva, W. Monk, K. Nakamura, G. G. Ndiritu, R. Ogden, M. Peat, T. B. Reynoldson, B. Rios-Touma, P. Segurado & A. G. Yates, 2021. The biological assessment and rehabilitation of the world’s rivers: An overview. Water 13: 371. https://doi.org/10.3390/w13030371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández, E., R. Ferriz, C. Bentos & G. López, 2008. Ichthyofauna of two streams in the high basin of the Samborombón River, Buenos Aires province, Argentina. Revista Del Museo Argentino De Ciencias Naturales Nueva Serie 10: 147–154.

    Article  Google Scholar 

  • Fernández, E., R. Ferriz, C. Bentos & G. López, 2012. Dieta y ecomorfología de la ictiofauna del arroyo Manantiales, provincia de Buenos Aires, Argentina. Revista Del Museo Argentino De Ciencias Naturales Nueva Serie 14: 1–13.

    Article  Google Scholar 

  • Fernández, H. R., 2015. From an informed public to social learning for water management: is Argentina cast adrift. International Journal of Social Science and Humanities Research 3: 66–70.

    Google Scholar 

  • Ferreira, C. D. P. & L. Casatti, 2006. Integridade biótica de um córrego na bacia do Alto Rio Paraná avaliada por meio da comunidade de peixes. Biota Neotropica 6: 1–25. https://doi.org/10.1590/S1676-06032006000300002.

    Article  Google Scholar 

  • Ganasan, V. & R. M. Hughes, 1998. Application of an index of biological integrity (IBI) to fish assemblages of the rivers Khan and Kshipra (Madhya Pradesh), India. Freshwater Biology 40: 367–383. https://doi.org/10.1046/j.1365-2427.1998.00347.x.

    Article  Google Scholar 

  • Giorgi, A., C. S. Feijoó & G. Tell, 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation 14: 1699–1718. https://doi.org/10.1007/s10531-004-0694-z.

    Article  Google Scholar 

  • Giorgi, A., J. J. Rosso & E. Zunino, 2014. Efectos de la exclusión de ganado sobre la calidad ambiental de un arroyo pampeano. Biología Acuática 30: 133–140.

    Google Scholar 

  • Giorgi, A., C. Vilches, M. C. Rodríguez Castro, E. Zunino, J. Debandi, S. Kravetz & A. Torremorell, 2013. Efecto de la invasión de acacia negra (Gleditsia triacanthos L. (Fabaceae) sobre la temperature, luz y metabolismo de un arroyo pampeano. Acta Biológica Colombiana 19: 113–118. https://doi.org/10.15446/abc.v19n1.38384.

    Article  Google Scholar 

  • Gómez, N. & M. Licursi, 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35: 173–181. https://doi.org/10.1023/A:1011415209445.

    Article  Google Scholar 

  • Gómez, N., E. Domínguez, A. Rodrigues Capítulo & H. R. Fernández, 2020. Los indicadores biológicos. In Domínguez, E., A. Giorgi & N. Gómez (eds), La bioindicación en el monitoreo y evaluación de los sistemas fluviales de la Argentina EUDEBA Ciudad Autónoma de Buenos Aires, Argentina: 57–72.

    Google Scholar 

  • Gonino, G., E. Benedito, V. D. M. Cionek, M. T. Ferreira & J. M. Oliveira, 2020. A fish-based index of biotic integrity for neotropical rainforest sandy soil streams–Southern Brazil. Water 12: 1215. https://doi.org/10.3390/w12041215.

    Article  Google Scholar 

  • Granitto, M., J. J. Rosso, M. B. Boveri & A. M. Rennella, 2016. Impacto del uso del suelo sobre la condición de ribera en arroyos pampeanos y su relación con la estructura de la comunidad de peces. Biología Acuática 31: 19–27.

    Google Scholar 

  • Guiloski, I. C., S. C. Rossi, C. A. da Silva & H. C. de Assis, 2013. Insecticides biomarker responses on a freshwater fish Corydoras paleatus (Pisces: Callichthyidae). Journal of Environmental Science and Health 48: 272–277. https://doi.org/10.1080/03601234.2013.743774.

    Article  CAS  PubMed  Google Scholar 

  • Hollander, M. & D. A. Wolfe, 1973. Nonparametric Statistical Methods, John Wiley & sons, New York:

    Google Scholar 

  • Holmlund, C. M. & M. Hammer, 1999. Ecosystem services generated by fish populations. Ecological Economics 29: 253–268. https://doi.org/10.1016/S0921-8009(99)00015-4.

    Article  Google Scholar 

  • Horak, C. N., Y. A. Assef, M. G. Grech & M. L. Miserendino, 2020. Agricultural practices alter function and structure of macroinvertebrate communities in Patagonian piedmont streams. Hydrobiologia 847: 3659–3676. https://doi.org/10.1007/s10750-020-04390-z.

    Article  CAS  Google Scholar 

  • Hued, A. & M. Á. Bistoni, 2005. Development and validation of a Biotic Index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia 543: 279–298. https://doi.org/10.1007/s10750-004-7893-1.

    Article  Google Scholar 

  • Hughes, R. M., 1995. Defining acceptable biological status by comparing with reference conditions. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria-Tools for Water Resource Planning and Decision Making Lewis Press, Florida: 31–47.

    Google Scholar 

  • Instituto Nacional de Estadística y Censos de la República Argentina (INDEC), 2022. Censo 2022: resultados provisorios. Retrieved from: https://www.censo.gob.ar/index.php/censo-2022-resultados-provisorios/

  • Jones, E. D., G. S. Helfman, J. O. Harper & P. V. Bolstad, 1999. Effects of riparian forest removal on fish assemblages in southern Appalachian streams. Conservation Biology 13: 1454–1465. https://doi.org/10.1046/j.1523-1739.1999.98172.x.

    Article  Google Scholar 

  • Jungwirth, M., S. Muhar & S. Schmutz, 2000. Assessing the Ecological Integrity of Running Waters, Springer Science and Business Media, Vienna:, 508.

    Book  Google Scholar 

  • Karr, J., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27. https://doi.org/10.1577/1548-8446(1981)006%3c0021:AOBIUF%3e2.0.CO;2.

    Article  Google Scholar 

  • Karr, J., K. Faush, P. Angermeier, P. Yant & I. Schlosser, 1986. Assessing Biological Integrity in Running Waters a Method and Its Rationale, Illinois Natural History Survey Special Publication, Illinois:, 5.

    Google Scholar 

  • Kautza, A., S. Sullivan & P. Mažeika, 2012. Relative effects of local-and landscape-scale environmental factors on stream fish assemblages: evidence from Idaho and Ohio, USA. Fundamental and Applied Limnology 180: 259–270. https://doi.org/10.1127/1863-9135/2012/0282.

    Article  Google Scholar 

  • Li, J., L. Huang, L. Zou, Y. Kano, T. Sato & T. Yahara, 2012. Spatial and temporal variation of fish assemblages and their associations to habitat variables in a mountain stream of north Tiaoxi River, China. Environmental Biology of Fishes 93: 403–417. https://doi.org/10.1007/s10641-011-9928-6.

    Article  Google Scholar 

  • Liotta, J., 2022. Base de datos de peces de aguas continentales de Argentina. Retrieved from http://www.pecesargentina.com.ar

  • Lowe-McConnell, R. H., 1987. Ecological studies in tropical fish communities, Cambridge University Press, Cambridge:, 382.

    Book  Google Scholar 

  • Mahibbur, R. M. & Z. Govindarajulu, 1997. A modification of the test of Shapiro and Wilks for normality. Journal of Applied Statistics 24: 219–235.

    Article  Google Scholar 

  • Malabarba, L. R., R. E. Reis, R. P. Vari, Z. M. S. Lucena & C. A. S. Lucena, 1998. Phylogeny and classification of Neotropical fishes, Editora Universitaria da PUCRS, Porto Alegre:, 603.

    Google Scholar 

  • Martinez, J. F., R. L. Lui, D. R. Blanco, J. B. Traldi, L. F. Silva, P. C. Venere, I. L. Souza & O. Moreira-Filho, 2011. Comparative cytogenetics of three populations from the Rhamdia quelen species complex (Siluriformes, Heptapteridae) in two Brazilian hydrographic basins. Caryologia 64: 121–128. https://doi.org/10.1080/00087114.2011.10589772.

    Article  Google Scholar 

  • Masson, I., J. González Castelain, S. Dubny, N. Othax & F. Peluso, 2021. Index of biotic integrity based on fish assemblages for pampean streams and its implementation along the Del Azul stream (Buenos Aires province, Argentina). Acta Limnologica Brasiliensia 33: 4. https://doi.org/10.1590/S2179-975X8220.

    Article  Google Scholar 

  • Mathuriau, C., N. Mercado, J. Lyons & L. Martínez Rivera, 2011. Los peces y macroinvertebrados como bioindicadores para evaluar la calidad de los ecosistemas acuáticos en México: estado actual y perspectivas. Retos De La Investigación Del Agua En México 32: 363–374.

    Google Scholar 

  • Mazzeo, N., L. Rodríguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. García-Rodríguez, 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506: 591–602. https://doi.org/10.1023/B:HYDR.0000008571.40893.77.

    Article  Google Scholar 

  • McCormick, F. H., R. M. Hughes, P. R. Kaufmann, D. V. Peck, J. L. Stoddard & A. T. Herlihy, 2001. Development of an index of biotic integrity for the Mid-Atlantic Highlands region. Transactions of the American Fisheries Society 130: 857–877. https://doi.org/10.1577/1548-8659(2001)130%3c0857:DOAIOB%3e2.0.CO;2.

    Article  Google Scholar 

  • McGrane, S. J., 2016. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal 61: 2295–2311. https://doi.org/10.1080/02626667.2015.1128084.

    Article  Google Scholar 

  • Meyer, J. L., M. J. Paul & W. K. Taulbee, 2005. Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society 24: 602–612. https://doi.org/10.1899/04-021.1.

    Article  Google Scholar 

  • Miserendino, M. L., C. Brand & C. Y. Di Prinzio, 2008. Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water, Air, and Soil Pollution 194: 91–110. https://doi.org/10.1007/s11270-008-9701-4.

    Article  CAS  Google Scholar 

  • Morrás, H. J. M., 1999. Geochemical differentiation of Quaternary sediments from the Pampean region based on soil phosphorus contents as detected in the early 20th century. Quaternary International 62: 57–67. https://doi.org/10.1016/s1040-6182(99)00023-3.

    Article  Google Scholar 

  • Moscuzza, C., A. V. Volpedo, C. Ojeda & A. F. Fernández Cirelli, 2007. Water quality index as a tool for river assessment in agricultural areas in the pampean plains of Argentina. Journal of Urban and Environmental Engineering 1: 18–25. https://doi.org/10.4090/juee.2007.v1n1.018025.

    Article  Google Scholar 

  • Nelson, J. S., T. C. Grande & M. V. Wilson, 2016. Fishes of the World, John Wiley & Sons, Hoboken:, 752.

    Book  Google Scholar 

  • Oberdorff, T. & R. M. Hughes, 1992. Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine Basin, France. Hydrobiologia 228: 117–130. https://doi.org/10.1007/BF00006200.

    Article  Google Scholar 

  • O’Callaghan, P., M. Kelly-Quinn, E. Jennings, P. Antunes, M. O’Sullivan, O. Fenton & D. O. Huallachain, 2018. The environmental impact of cattle access to watercourses: a review. Journal of Environmental Quality 48: 340–351. https://doi.org/10.2134/jeq2018.04.0167.

    Article  CAS  Google Scholar 

  • Orsi, M. L., E. D. Carvalho & F. Foresti, 2004. Biologia populacional de Astyanax altiparanae Garutti & Britski (Teleostei, Characidae) do médio rio Paranapanema, Paraná, Brasil. Revista Brasileira De Zoologia, Curitiba 21: 207–218. https://doi.org/10.1590/S0101-81752004000200008.

    Article  Google Scholar 

  • Paggi, A., 2003. Los Quironómidos (Diptera) y su empleo como bioindicadores. Biología Acuática 21: 50–57.

    Google Scholar 

  • Paracampo, A., N. Marrochi, I. García, T. Maiztegui, P. Carriquiriborde, C. Bonetto & H. Mugni, 2020. Fish assemblages in Pampean streams (Buenos Aires, Argentina): relationship to abiotic and anthropic variables. Anais Da Academia Brasileira De Ciências 92: 1–17. https://doi.org/10.1590/0001-3765202020190476.

    Article  CAS  Google Scholar 

  • Paredes del Puerto, J. M., A. H. Paracampo, I. D. García, T. Maiztegui, J. R. Garcia de Souza, M. E. Maroñas & D. C. Colautti, 2021. Fish assemblages and water quality in pampean streams (Argentina) along an urbanization gradient. Hydrobiologia 848: 4493–4510. https://doi.org/10.1007/s10750-021-04657-z.

    Article  CAS  Google Scholar 

  • Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology, Evolution, and Systematics 32: 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040.

    Article  Google Scholar 

  • Pesce, S. & D. Wunderlin, 2000. Use of water quality indexes to verify the impact of Córdoba City (Argentina) on Suquía River. Water Research 34: 2915–2926. https://doi.org/10.1016/S0043-1354(00)00036-1.

    Article  CAS  Google Scholar 

  • Piálek, L., O. Říčan, J. Casciotta, A. Almirón & J. Zrzavý, 2012. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Molecular Phylogenetics and Evolution 62: 46–61. https://doi.org/10.1016/j.ympev.2011.09.006.

    Article  PubMed  Google Scholar 

  • Pinto, B. C. T. & F. G. Araújo, 2007. Assessing of biotic integrity of the fish community in a heavily impacted segment of a tropical river in Brazil. Brazilian Archives of Biology and Technology 50: 489–502. https://doi.org/10.1590/S1516-89132007000300015.

    Article  Google Scholar 

  • Platts W. S., 1979. Livestock grazing and riparian/stream ecosystems-an overview. In: Cope O.B. (ed.), Proceedings of the forum-grazing and riparian/stream ecosystems. Trout Unlimited Inc, Denver: 39–45.

  • Ramírez-Herrejón, J. P., N. Mercado-Silva, M. Medina-Nava & O. Domínguez-Domínguez, 2012. Validación de dos índices biológicos de integridad (IBI) en la subcuenca del río Angulo en el centro de México. Revista De Biología Tropical 60: 1669–1685.

    Article  PubMed  Google Scholar 

  • Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess waterquality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16: 833–852. https://doi.org/10.2307/1468175.

    Article  Google Scholar 

  • Ringuelet, R. A., 1975. Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur. Ecosur 2: 1–122.

    Google Scholar 

  • Rocha, L., C. Hegoburu, A. Torremorell, C. S. Feijoó, E. Navarro & H. R. Fernández, 2020. Use of ecosystem health indicators for assessing anthropogenic impacts on freshwaters in Argentina: a review. Environmental Monitoring and Assessment 192: 1–26. https://doi.org/10.1007/s10661-020-08559-w.

    Article  Google Scholar 

  • Rodrigues Capítulo, A., M. Tangorra & C. Ocón, 2001. Use of benthic macroinvertebrates to assess the biological status of Pampean streams in Argentina. Aquatic Ecology 35: 109–119. https://doi.org/10.1023/A:1011456916792.

    Article  Google Scholar 

  • Rosso, J. J., 2006. Peces pampeanos: guía y ecología, Literature of Latin America, Buenos Aires:, 221.

    Google Scholar 

  • Rosso, J. J. & A. F. Fernández Cirelli, 2013. Effects of land use on environmental conditions and macrophytes in prairie lotic ecosystems. Limnologica 43: 18–26. https://doi.org/10.1016/j.limno.2012.06.001.

    Article  CAS  Google Scholar 

  • Rosso, J. J. & R. Quirós, 2009. Interactive effects of abiotic, hydrological and anthropogenic factors on fish abundance and distribution in natural run-of-the-river shallow lakes. River and Applications 25: 713–733. https://doi.org/10.1002/rra.1185.

    Article  Google Scholar 

  • Rosso, J. J. & R. Quirós, 2010. Patterns in fish species composition and assemblage structure in the upper Salado River lakes, Pampa Plain, Argentina. Neotropical Ichthyology 8: 135–144. https://doi.org/10.1590/S1679-62252010005000007.

    Article  Google Scholar 

  • Rosso, J. J., M. González-Castro, S. Bogan, Y. P. Cardoso, E. Mabragaña, M. Delpiani & J. M. D. Díaz de Astarloa, 2018. Integrative taxonomy reveals a new species of the Hoplias malabaricus species complex (Teleostei: Erythrinidae). Ichthyological Exploration of Freshwaters. 28: 1–18. https://doi.org/10.23788/IEF-1076.

    Article  Google Scholar 

  • Serra, W. S., M. Loureiro, C. Clavijo, F. Alonso, F. Scarabino & N. Rios, 2019. Peces del bajo Rio Uruguay: Especies Destacadas, CARU, Paysandú:, 176.

    Google Scholar 

  • Sierra, E. M., M. E. Fernández Long & C. Bustos, 1994. Cronología de inundaciones y sequías en el noreste de la provincia de Buenos Aires 1911–89. Revista De La Facultad De Agronomía 14: 241–249.

    Google Scholar 

  • Sirota, J., B. Baiser, N. J. Gotelli & A. M. Ellison, 2013. Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem. Proceedings of the National Academy of Sciences of the United States of America 110: 7742–7747. https://doi.org/10.1073/pnas.1221037110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steedman, R. J., 1988. Modification and assessment of an index of biotic integrity to quantify stream quality in southern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 45: 492–501.

    Article  Google Scholar 

  • Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams the concept of reference condition. Ecological Applications 16: 1267–1276. https://doi.org/10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2.

    Article  PubMed  Google Scholar 

  • Teixeira de Mello, F., 2007. Efecto del uso del suelo sobre la calidad del agua y las comunidades de peces en sistemas lóticos de la cuenca baja del Río Santa Lucía (Uruguay). Tesis de Maestría, Universidad de la República, Montevideo:

    Google Scholar 

  • Teixeira de Mello, F., M. Meerhoff, I. González-Bergonzoni, E. A. Kristensen, A. Baattrup-Pedersen & E. Jeppesen, 2015. Influence of riparian forests on fish assemblages in temperate lowland streams. Environmental Biology of Fishes 99: 133–144. https://doi.org/10.1007/s10641-015-0462-9.

    Article  Google Scholar 

  • Teresa, F. B. & L. Casatti, 2012. Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecology of Freshwater Fish 21: 433–442. https://doi.org/10.1111/j.1600-0633.2012.00562.x.

    Article  Google Scholar 

  • Tibúrcio, G. S., C. D. S. Carvalho, F. C. Ferreira, R. Goitein & M. C. Ribeiro, 2016. Landscape effects on the occurrence of ichthyofauna in first-order streams of southeastern Brazil. Acta Limnologica Brasiliensia 28: e2. https://doi.org/10.1590/S2179-975X2515.

    Article  Google Scholar 

  • Tietze, E. & C. de Francesco, 2010. Environmental significance of freshwater mollusks in the Southern Pampas, Argentina: to what detail can local environments be inferred from mollusk composition? Hydrobiologia 641: 133–143. https://doi.org/10.1007/s10750-009-0072-7.

    Article  CAS  Google Scholar 

  • Toham, A. K. & G. G. Teugels, 1999. First data on an Index of Biotic Integrity (IBI) based on fish assemblages for the assessment of the impact of deforestation in a tropical West African river system. Hydrobiologia 397: 29–38. https://doi.org/10.1023/A:1003605801875.

    Article  Google Scholar 

  • Torres, R. A., J. J. Roper, F. Foresti & C. Oliveira, 2005. Surprising genomic diversity in the Neotropical fish Synbranchus marmoratus (Teleostei: Synbranchidae): how many species? Neotropical Ichthyology 3: 277–284. https://doi.org/10.1590/S1679-62252005000200005.

    Article  Google Scholar 

  • Trautwein, C., R. Schinegger & S. Schmutz, 2012. Cumulative effects of land use on fish metrics in different types of running waters in Austria. Aquatic Sciences 74: 329–341. https://doi.org/10.1007/s00027-011-0224-5.

    Article  PubMed  Google Scholar 

  • Vidon, P., M. A. Campbell & M. Gray, 2008. Unrestricted cattle access to streams and water quality in till landscape of the Midwest. Agricultural Water Management 95: 322–330. https://doi.org/10.1016/j.agwat.2007.10.017.

    Article  Google Scholar 

  • Viglizzo, E. F., F. Lértora, A. J. Pordomingo, J. N. Bernardos, Z. E. Roberto & H. Del Valle, 2001. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems & Environment 83: 65–81. https://doi.org/10.1016/S0167-8809(00)00155-9.

    Article  Google Scholar 

  • Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman & R. P. Morgan, 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723. https://doi.org/10.1899/04-028.1.

    Article  Google Scholar 

  • Weijters, M. J., J. H. Janse, R. Alkemade & J. T. A. Verhoeven, 2009. Quantifying the effect of catchment land use and water nutrientconcentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 104–112. https://doi.org/10.1002/aqc.989.

    Article  Google Scholar 

  • Welcomme, R. L., 1985. River fisheries. FAO Technical paper 262, Food and Agriculture Organization of the United Nations, Rome:, 330.

    Google Scholar 

Download references

Acknowledgements

The authors thank the owners and managers of the study sites for allowing access and Micaela Chindamo for help in georeferencing the study sites in their watersheds. Authors are indebted to Viviana Colasurdo (Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires UNCPBA) for several chemical analyses of water samples and Anahí Tabera (Facultad de Ciencias Veterinarias, UNCPBA) by microbiological analysis of water samples. JJR is indebted to Laboratorio Fares Taie for support provided in water samples analyses.

Funding

This work was supported by the financial support of a doctoral fellowship from the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) awarded to Andrea Bertora and the support provided by CONICET to Juan José Rosso.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and performed data collection. AB and JJR performed the data analysis and wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Andrea Bertora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Luiz Ubiratan Hepp, Frank Onderi Masese & Franco Teixeira de Mello / Stream Ecology and Environmental Gradients

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 21 KB)

Supplementary file2 (PDF 341 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertora, A., Grosman, F., Sanzano, P. et al. Impoverished fish assemblages of temperate Neotropical streams respond to environmental degradation and support a sensitive Index of Biotic Integrity. Hydrobiologia 851, 383–408 (2024). https://doi.org/10.1007/s10750-023-05211-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05211-9

Keywords

Navigation