Skip to main content
Log in

Mine reclamation does not restore leaf processing in low-order streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the United States, mine reclamation has been regulated under the Surface Mining Control and Reclamation Act (SMCRA) since 1977; however, there is a lack of research examining the efficacy of this legislation on restoring ecological structure and function in affected headwater streams. We compared water chemistry characteristics, rate of senescent white oak leaf litter processing, and invertebrate community composition of three first- and second-order streams draining surface mines reclaimed in accordance with SMCRA to that of streams draining three pre-SMCRA abandoned surface mines and three unmined reference watersheds within the Western Allegheny Plateau ecoregion of Ohio. Streams draining reclaimed and abandoned mines had lower pH, higher conductivity, and leaf processing rates that averaged 7 and 24 times lower, respectively, than reference streams. The invertebrate community composition of reclaimed streams differed in several respects from abandoned mine and reference streams, including a shift in proportional dominance from leaf shredding taxa to grazing and scraping taxa, such as gastropods. Although SMCRA has successfully mitigated some sources of water quality impairment, our results suggest that mine drainage remains a persistent barrier to the restoration of headwater stream ecology in mined landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Abelho, M., 2001. From litterfall to breakdown in streams: a review. The Scientific World Journal 1: 180292.

    Article  Google Scholar 

  • Alexander, R. B., E. W. Boyer, R. A. Smith, G. E. Schwarz & R. B. Moore, 2007. The role of headwater streams in downstream water quality. Journal of the American Water Resources Association 43: 41–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377.

    Article  Google Scholar 

  • Barnden, A. R. & J. S. Harding, 2005. Shredders and leaf breakdown in streams polluted by coal mining in the South Island, New Zealand. New Zealand Natural Sciences 30: 35–48.

    Google Scholar 

  • Baudoin, J. M., F. Guérold, V. Felten, E. Chauvet, P. Wagner & P. Rousselle, 2008. Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown. Microbial Ecology 56: 260–269.

    Article  CAS  PubMed  Google Scholar 

  • Benfield, E. F., K. M. Fritz & S. D. Tiegs, 2017. Leaf litter breakdown. In Lamberti, G. A. (ed), Methods in Stream Ecology (3rd ed.), Volume 2: Ecosystem Function. Elsevier, Amsterdam.

    Google Scholar 

  • Bier, R. L., K. A. Voss & E. S. Bernhardt, 2015. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. The ISME Journal 9: 1378–1390.

    Article  CAS  PubMed  Google Scholar 

  • Bott, T. L., J. K. Jackson, M. E. McTammany, J. D. Newbold, S. T. Rier, B. W. Sweeney & J. M. Battle, 2012. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Ecological Applications 22: 2144–2163.

    Article  PubMed  Google Scholar 

  • Bouchard, R. W., Jr., 2004. Guide to Aquatic Invertebrates of the Upper Midwest: Identification Manual for Students, Citizen Monitors, and Aquatic Resource Professionals, University of Minnesota, St. Paul:

    Google Scholar 

  • Brady, J. K. & A. M. Turner, 2010. Species-specific effects of gastropods on leaf litter processing in pond mesocosms. Hydrobiologia 651: 93–100.

    Article  Google Scholar 

  • Braun, E. L., 1961. The Woody Plants of Ohio, Ohio State University Press, Columbus:

    Google Scholar 

  • Canhoto, C. & M. Graça, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwater Biology 34: 209–214.

    Article  Google Scholar 

  • Cavender, N., S. Byrd, C. L. Bechtoldt & J. M. Bauman, 2014. Vegetation communities of a coal reclamation site in southeastern Ohio. Northeastern Naturalist 21: 31–46.

    Article  Google Scholar 

  • Chergui, H. & E. Pattee, 1988. The effect of water current on the decomposition of dead leaves and needles. SIL Proceedings 23: 1294–1298.

    Google Scholar 

  • Cianciolo, T. R., D. L. McLaughlin, C. E. Zipper, A. J. Timpano, D. J. Soucek & S. H. Shoenholtz, 2020. Impacts to water quality and biota persist in mining-influenced Appalachian streams. Science of the Total Environment 717: 137216.

    Article  CAS  PubMed  Google Scholar 

  • Clark, E. V., C. E. Zipper, D. J. Soucek & W. L. Daniels, 2021. Contaminants in Appalachian water resources generated by non-acid-forming coal-mining materials. In Zipper, C. E. & J. Skousen (eds), Appalachia’s Coal-Mined Landscapes. Springer Nature, Cham.

    Google Scholar 

  • Cormier, S. M., G. W. Suter II., L. Zheng & G. J. Pond, 2013. Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environmental Toxicology and Chemistry 32: 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Cuffney, T. F., J. B. Wallace & G. J. Lugthart, 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwater Biology 23: 281–299.

    Article  Google Scholar 

  • Daniels, W. L., C. E. Zipper, Z. W. Orndorff, J. Skousen, C. D. Barton, L. M. McDonald & M. A. Beck, 2016. Predicting total dissolved solids release from central Appalachian coal mine spoils. Environmental Pollution 216: 371–379.

    Article  CAS  PubMed  Google Scholar 

  • DeVilbiss, S. E., M. K. Steele, B. L. Brown & B. D. Badgley, 2022. Stream bacterial diversity peaks at intermediate freshwater salinity and varies by salt type. Science of the Total Environment 840: 156690.

    Article  CAS  PubMed  Google Scholar 

  • dos Santos Fonseca, A. L., I. Bianchini Jr., C. M. M. Pimenta, C. Botelho, P. Soares & N. Mangiavacchi, 2013. The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia 703: 59–67.

    Article  Google Scholar 

  • Drover, D. R., C. E. Zipper, D. J. Soucek & S. H. Schoenholtz, 2019. Using density, dissimilarity, and taxonomic replacement to characterize mining-influenced benthic macroinvertebrate community alterations in central Appalachia. Ecological Indicators 106: 105535.

    Article  Google Scholar 

  • Encalada, A. C., J. Calles, V. Ferreira, C. M. Canhoto & M. A. Graca, 2010. Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55: 1719–1733.

    Google Scholar 

  • England, L. E. & A. D. Rosemond, 2004. Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshwater Biology 49: 721–734.

    Article  Google Scholar 

  • Eriksson, K. A. & W. L. Daniels, 2021. Environmental implications of regional geology and coal mining in the Appalachians. In Zipper, C. E. & J. Skousen (eds), Appalachia’s Coal-Mined Landscapes. Springer, Cham.

    Google Scholar 

  • Ferreira, V., A. Elosegi, S. D. Tiegs, D. von Schiller & R. Young, 2020. Organic matter decomposition and ecosystem metabolism as tools to assess the functional integrity of streams and rivers–a systematic review. Water 12: 3523.

    Article  CAS  Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in bear brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.

    Article  Google Scholar 

  • Fritz, K. M., S. Fulton, B. R. Johnson, C. D. Barton, J. D. Jack, D. A. Word & R. A. Burke, 2010. Structural and functional characteristics of natural and constructed channels draining a reclaimed mountaintop removal and valley fill coal mine. Journal of the North American Benthological Society 29: 673–689.

    Article  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 2002. A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12: 498–510.

    Article  Google Scholar 

  • Giam, X., J. D. Olden & D. Simberloff, 2018. Impact of coal mining on stream biodiversity in the US and its regulatory implications. Nature Sustainability 1: 176–183.

    Article  Google Scholar 

  • Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology: An Introduction for Ecologists, 2nd ed. Wiley, London:

    Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams-a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Gray, L. J. & J. V. Ward, 1983. Leaf litter breakdown in streams receiving treated and untreated metal mine drainage. Environment International 9: 135–138.

    Article  CAS  Google Scholar 

  • Griffith, M. B., S. B. Norton, L. C. Alexander, A. I. Pollard & S. D. LeDuc, 2012. The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the Central Appalachians: a review. Science of the Total Environment 417–418: 1–12.

    Article  PubMed  Google Scholar 

  • Herlihy, A. T., P. R. Kaufmann, M. E. Mitch & D. D. Brown, 1990. Regional estimates of acid mine drainage impact on streams in the Mid-Atlantic and southeastern United States. Water, Air, and Soil Pollution 50: 91–107.

    Article  CAS  Google Scholar 

  • Hopkins, R. L., II., B. M. Altier, D. Haselman, A. D. Merry & J. J. White, 2013. Exploring the legacy effects of surface coal mining on stream chemistry. Hydrobiologia 713: 87–95.

    Article  CAS  Google Scholar 

  • Huryn, A. D., V. M. Butz Huryn, C. J. Arbuckle & L. Tsomides, 2002. Catchment land-use, macroinvertebrates and detritus processing in headwater streams: taxonomic richness versus function. Freshwater Biology 47: 401–415.

    Article  Google Scholar 

  • Johnson, K. S., P. C. Thompson, L. Gromen & J. Bowman, 2014. Use of leaf litter breakdown and macroinvertebrates to evaluate gradient of recovery in an acid mine impacted stream remediated with an active alkaline doser. Environmental Monitoring and Assessment 186: 4111–4127.

    Article  CAS  PubMed  Google Scholar 

  • Krenz, R. J., III., S. H. Shoenholtz & C. E. Zipper, 2016. Riparian subsidies and hierarchical effects of ecosystem structure on leaf breakdown in Appalachian coalfield constructed streams. Ecological Engineering 97: 389–399.

    Article  Google Scholar 

  • Kruse Daniels, N., J. A. LaBar & L. M. McDonald, 2021. Acid mine drainage in Appalachia: sources, legacy, and treatment. In Zipper, C. E. & J. Skousen (eds), Appalachia’s Coal-Mined Landscapes. Springer, Cham.

    Google Scholar 

  • Lasier, P., P. Winger & K. Bogenrieder, 2000. Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca. Archives of Environmental Contamination and Toxicology 38: 298–304.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, T. T., E. S. Bernhardt, R. Bier, A. M. Helton, R. B. Merola, A. Vengosh & R. T. Di Giulio, 2011. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences 108: 20929–20934.

    Article  CAS  Google Scholar 

  • MacDonald, L. H. & D. Coe, 2007. Influence of headwater streams on downstream reaches in forested areas. Forest Science 53: 148–168.

    Google Scholar 

  • Maltby, L. & R. Booth, 1991. The effect of coal-mine effluent on fungal assemblages and leaf breakdown. Water Research 25: 247–250.

    Article  CAS  Google Scholar 

  • Martínez, A., A. Larrañaga, J. Pérez, E. Descals & J. Pozo, 2014. Temperature affects leaf litter decomposition in low-order forest streams: field and microcosm approaches. FEMS Microbiology Ecology 87: 257–267.

    Article  PubMed  Google Scholar 

  • McCafferty, W. P., 1981. Aquatic Entomology: The Fisherman’s and Ecologists’ Illustrated Guide to Insects and Their Relatives, Science Books International, Boston:

    Google Scholar 

  • Merovitch, G. T., Jr., N. P. Hitt, E. R. Merriam & J. W. Jones, 2021. Response of aquatic life to coal mining in Appalachia. In Zipper, C. E. & J. Skousen (eds), Appalachia’s Coal-Mined Landscapes. Springer, Cham.

    Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, Kendall Hunt Publishing, Dubuque:

    Google Scholar 

  • Montrie, C., 2003. To Save the Land and People, The University of North Carolina Press, Chapel Hill:

    Google Scholar 

  • Niyogi, D. K., J. S. Harding & K. S. Simon, 2013. Organic matter breakdown as a measure of stream health in New Zealand streams affected by acid mine drainage. Ecological Indicators 24: 510–517.

    Article  CAS  Google Scholar 

  • Oblinger Childress, C.J., 1985. Classification of stream basins in southeastern Ohio according to extent of surface coal mining. Water-resources investigations report. U.S. Geological Survey 84-4212.

  • ODNR (Ohio Department of Natural Resources), 2020. Mines of Ohio. Retrieved June 22, 2020, from https://gis.ohiodnr.gov/MapViewer/?config=OhioMines

  • OEPA (Ohio Environmental Protection Agency), 2018. Field methods for evaluating primary headwater streams in Ohio (Version 4.0). Ohio EPA Division of Surface Water, Columbus, OH.

  • Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16: 750–759.

    Article  Google Scholar 

  • Palmer, M. A. & K. L. Hondula, 2014. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia. Environmental Science & Technology 48: 10552–10560.

    Article  CAS  Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.

    Article  Google Scholar 

  • Petty, J. T., J. B. Fulton, M. P. Strager, G. T. Merovitch Jr., J. M. Stiles & P. F. Ziemkiewicz, 2010. Landscape indicators and thresholds of stream ecological impairment in an intensively mined Appalachian watershed. Journal of the North American Benthological Society 29: 1292–1309.

    Article  Google Scholar 

  • Petty, J. T., G. Gingerich, J. T. Anderson & P. F. Ziemkiewicz, 2013. Ecological function of constructed perennial stream channels on reclaimed surface coal mines. Hydrobiologia 720: 39–53.

    Article  CAS  Google Scholar 

  • Pfaff, C.L., D.R. Helsel, D.P. Johnson & C.G. Angelo, 1981. Assessment of water quality in streams draining coal-producing areas of Ohio. U.S. Geological Survey 81-409.

  • Pond, G. J., 2012. Biodiversity loss in Appalachian headwater streams (Kentucky, U.S.A.): Plecoptera and Trichoptera communities. Hydrobiologia 679: 97–117.

    Article  CAS  Google Scholar 

  • Pond, G., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.

    Article  Google Scholar 

  • Pond, G. J., M. E. Passmore, N. D. Pointon, J. K. Felbinger, C. A. Walker, K. J. Krock, J. B. Fulton & W. L. Nash, 2014. Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in central Appalachia. Environmental Management. 54: 919–933.

    Article  PubMed  Google Scholar 

  • Sauer, F. G., M. Bundschuh, J. P. Zubrod, R. B. Schäfer, K. Thompson & B. J. Kefford, 2016. Effects of salinity on leaf breakdown: dryland salinity versus salinity from a coalmine. Aquatic Toxicology 177: 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Sayler, K.L., 2016. Western Allegheny Plateau ecoregion. In: Sayler, K.L., W. Acevedo & J.L. Taylor (eds). Status and trends of land change in the Eastern United States—1973 to 2000: U.S. Geological Survey Professional Paper 1794–D

  • Schlief, J. & M. Mutz, 2006. Palatability of leaves conditioned in streams affected by mine drainage: a feeding experiment with Gammarus pulex (L.). Hydrobiologia 563: 445–452.

    Article  CAS  Google Scholar 

  • Simmons, J. A., E. R. Lawrence & T. G. Jones, 2005. Treated and untreated acid mine drainage effects on stream periphyton biomass, leaf decomposition, and macroinvertebrate diversity. Journal of Freshwater Ecology 20: 413–424.

    Article  Google Scholar 

  • Simmons, J. A., W. S. Currie, K. N. Eshleman, K. Kuers, S. Monteleone, T. L. Negley, B. R. Pohlad & C. L. Thomas, 2008. Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecological Applications 18: 104–118.

    Article  PubMed  Google Scholar 

  • Skousen, J. & C. E. Zipper, 2021. Coal mining and reclamation in Appalachia. In Zipper, C. E. & J. Skousen (eds), Appalachia’s Coal-Mined Landscapes. Springer Nature, Cham.

    Google Scholar 

  • Skousen, J., C. E. Zipper, A. Rose, P. F. Ziemkiewicz, R. Nairin, L. M. McDonald & R. L. Kleinmann, 2017. Review of passive systems for acid mine drainage treatment. Mine Water and the Environment 36: 133–153.

    Article  CAS  Google Scholar 

  • Stevens, M. H. H. & K. W. Cummins, 1999. Effects of long-term disturbance on riparian vegetation and in-stream characteristics. Journal of Freshwater Ecology 14: 1–17.

    Article  Google Scholar 

  • Strosnider, W. H., J. Hugo, N. L. Shepherd, B. K. Holzbauer-Schweitzer, P. Hervé-Fernández, C. Wolkersdorfer & R. W. Nairn, 2020. A snapshot of coal mine drainage discharge limits for conductivity, sulfate, and manganese across the developed world. Mine Water and the Environment 39: 165–172.

    Article  CAS  Google Scholar 

  • Suberkropp, K., V. Gulis, A. D. Rosemond & J. P. Benstead, 2010. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment. Limnology and Oceanography 55: 149–160.

    Article  Google Scholar 

  • Thorp, J. H. & A. P. Covich (eds), 2001. Ecology and Classification of North American Freshwater Invertebrates., 2nd ed. Academic Press, San Diego.

    Google Scholar 

  • Timpano, A. J., S. H. Schoenholtz, D. J. Soucek & C. E. Zipper, 2018. Benthic macroinvertebrate community response to salinization in headwater streams in Appalachia USA over multiple years. Ecological Indicators 91: 645–656.

    Article  Google Scholar 

  • USEPA (United States Environmental Protection Agency), 2007. Method 6010C. Inductively coupled plasma-atomic emission spectrometry. In: SW-846. U.S. Environmental Protection Agency, Washington, DC.

  • USEPA (United States Environmental Protection Agency), 2011. A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams. EPA600-R-10-023F. Office of Research and Development, National Center for Environmental Assessment, Washington, DC.

  • USEPA (United States Environmental Protection Agency), 2018. Final aquatic life ambient water quality criteria for aluminum. In: EPA-822-R-18–001. Office of Water, Washington, DC.

  • USEPA (United States Environmental Protection Agency), 2022. National recommended water quality criteria: aquatic life criteria table. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table.

  • USGS (United States Geological Survey), 2020. Streamstats. https://streamstats.usgs.gov/ss/.

  • Valett, H. M. & D. T. Ely, 2019. Acidification, stress, and detrital processing: implications for ecosystem function in headwater streams. Hydrobiologia 826: 233–246.

    Article  CAS  Google Scholar 

  • Vander Vorste, R. V., A. J. Timpano, C. Cappellin, B. D. Badgley, C. E. Zipper & S. H. Schoenholtz, 2019. Microbial and macroinvertebrate communities, but not leaf decomposition, change along a mining-induced salinity gradient. Freshwater Biology 64: 671–684.

    Article  CAS  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries & Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.

    Article  Google Scholar 

  • Waters, D.D. & L.E. Roth, 1986. Soil survey of Tuscarawas County, Ohio. U.S. Department of Agriculture, Soil Conservation Service, Washington, D.C.

  • Zipper, C. E., J. A. Burger, J. G. Skousen, P. N. Angel, C. D. Barton, V. Davis & J. A. Franklin, 2011. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environmental Management 47: 751–765.

    Article  PubMed  Google Scholar 

  • Zipper, C. E., M. B. Adams & J. Skousen, 2021. The Appalachian coalfield in historical context. In Zipper, C. E. & J. Skousen (eds), Appalachia’s Coal-mined Landscapes. Springer, Cham.

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Mr. Eric Reip, the Demuth, Dugan, and Lab Families, Jason and Shanda Mushrush, the Camp Tuscazoar Foundation, The Wilderness Center, and the Tuscarawas County Commissioners for allowing us access to their properties. We also thank Jody Brady and two anonymous reviewers for their suggestions, which greatly improved this manuscript.

Funding

No funding was received to support this research, and both authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph K. Brady.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 170 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brady, J.K., Mushrush, J.A. Mine reclamation does not restore leaf processing in low-order streams. Hydrobiologia 850, 1189–1205 (2023). https://doi.org/10.1007/s10750-023-05154-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05154-1

Keywords

Navigation