Skip to main content
Log in

Molecular phylogeny and taxonomic revision of the cichlid genus Hemichromis (Teleostei, Cichliformes, Cichlidae), with description of a new genus and revalidation of H. angolensis

  • ADVANCES IN CICHLID RESEARCH V
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The tribe Hemichromini is an early diverging, mainly Central and West African lineage within the species-rich African cichlid fishes (Cichliformes, Cichlidae) including two genera, Hemichromis Peters 1858 and the monotypic Anomalochromis Greenwood 1985. Though many of the species are popular aquarium fish, the number of hemichromine species is still a matter of debate with their phylogenetic relationships largely unknown. Based on DNA sequence data of two mitochondrial and two nuclear genes, we present the first comprehensive phylogeny of the Hemichromini. Using an integrative approach based on these DNA sequences data, morphometrics, meristics, and a qualitative assessment of body coloration, we revise the genus Hemichromis and discuss intrageneric relationships. Two major groups within the genus Hemichromis that diverged roughly 6–12 MYA are recognized, of which the first one represents Hemichromis sensu stricto, for the second one a new genus, Rubricatochromis, is described. Diversification with these two main groups started about 3–6 MYA, with different trajectories of colonization in the two groups. Hemichromis populations from the most southern (Cuanza, Zambezi, and Okavango) part of the genus’ distribution range constitute a well-supported clade distinct from all other members of Hemichromis, for which the taxon H. angolensis Steindachner, 1865 is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Genetic data are available on GenBank (accession numbers listed in Supplementary Table 1) and morphological data are available from the corresponding author on reasonable request.

Abbreviations

SL:

Standard length

HL:

Head length

AMNH:

American Museum of Natural History, New York

BMNH:

British Museum (Natural History), London

MNHN:

Musèum National d’Histoire Naturelle, Paris

MRAC:

Musée Royal de l ‘Afrique Centrale, Tervuren

NMW:

Naturhistorisches Museum Wien

SAIAB:

South African Institute for Aquatic Biodiversity

USNM:

Smithsonian Institution, National Museum of Natural History, Washington

UVZC:

University Vienna Zoological Collection

ZMHU:

Zoologisches Museum der Humboldt Universität Berlin

ZSM:

Zoologische Staatssammlung München

References

  • Astudillo-Clavijo, V., M. L. J. Stiassny, K. L. Ilves, Z. Musilova, W. Salzburger & H. López-Fernández, 2022. Exon-based phylogenomics and the relationships of African cichlid fishes: tackling the challenges of reconstructing phylogenies with repeated rapid radiations. Systematic Biology. https://doi.org/10.1093/sysbio/syac051.

    Article  PubMed Central  Google Scholar 

  • Barel, C. D. N., M. J. P. Oijen, F. Witte & E. L. M. Witte-Maas, 1977. An Introduction to the Taxonomy of the Haplochromine Cichlidae from Lake Victoria. Netherlands Journal of Zoology 27: 333–389.

    Google Scholar 

  • Bell-Cross, G., 1975. A revision of certain Haplochromis species (Pisces: Cichlidae) of central Africa. Occasional Papers of the National Museums and Monuments of Rhodesia Series B Natural Sciences 5: 404–464.

    Google Scholar 

  • Bitja-Nyom, A. R., J. F. Agnèse, A. Pariselle, C. F. Bilong-Bilong, A. Gilles & J. Snoeks, 2021. A systematic revision of the five-spotted Hemichromis complex (Cichliformes: Cichlidae) from West Africa and Lower Guinea, with the description of a new species from Cameroon. Hydrobiologia 848: 3779–3803. https://doi.org/10.1007/s10750-020-04506-5.

    Article  Google Scholar 

  • Bouckaert, R., T. G. Vaughan, J. Barido-Sottani, S. Duchene, M. Fourment, A. Gavryushkina, J. Heled, G. Jones, D. Kühnert, N. de Maio, M. Matschiner, F. K. Mendes, H. A. Ogilvie, L. du Plessis, A. Popinga, A. Rambaut, D. Rasmussen, I. Siveroni, M. A. Suchard, C. H. Wu, D. Xie, G. C. Zhang, T. Stadler & A. J. Drummond, 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology 15: e1006650. https://doi.org/10.1371/journal.pcbi.1006650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulenger G. A., 1915. Catalogue of the Freshwater Fishes of Africa in the British Museum, III. Trustees of the British Museum (Natural History), London.

  • Bradbeer, S. J., J. Harrington, H. Watson, A. Warraich, A. Shechonge, A. Smith, R. Tamatamah, B. P. Ngatunga, G. F. Turner & M. J. Genner, 2019. Limited hybridization between introduced and critically endangered indigenous tilapia fishes in northern Tanzania. Hydrobiologia 832: 257–268. https://doi.org/10.1007/s10750-018-3572-5.

    Article  PubMed  Google Scholar 

  • Bragança, P. H. N. & W. J. E. M. Costa, 2019. Multigene fossil-calibrated analysis of the African lampeyes (Cyprinodontoidei: Procatopodidae) reveals an early Oligocene origin and Neogene diversification driven by palaeogeographic and palaeoclimatic events. Organisms Diversity & Evolution 19: 303–320. https://doi.org/10.1007/s13127-019-00396-1.

    Article  Google Scholar 

  • Breman, F. C., S. Loix, K. Jordaens, J. Snoeks & M. Van Steenberge, 2016. Testing the potential of DNA barcoding in vertebrate radiations: the case of the littoral cichlids (Pisces, Perciformes, Cichlidae) from Lake Tanganyika. Molecular Ecology Resources 16: 1455–1464. https://doi.org/10.1111/1755-0998.12523.

    Article  CAS  PubMed  Google Scholar 

  • Burchard, J. & W. Wickler, 1965. Eine neue Form des Cichliden Hemichromis fasciatus Peters (Pisces, Perciformes). Zeitschrift Für Zoologische Evolutionsforschung 3: 277–283.

    Article  Google Scholar 

  • Chow, S. & K. Hazama, 1998. Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology 7: 1255–1256.

    CAS  PubMed  Google Scholar 

  • Daget, J., J. P. Gosse, G. G. Teugels & D. F. E. Thys van den Audenaerde, 1991. Check-List of the Freshwater Fishes of Africa, Vol IV. ISNB/MRAC/ORSTOM: I-XII.

  • Day, J. J., A. Fages, K. J. Brown, E. J. Vreven, M. L. J. Stiassny, R. Bills, D. P. Friel & L. Rüber, 2017. Multiple independent colonizations into the Congo Basin during the continental radiation of African Mastacembelus spiny eels. Journal of Biogeography 44: 2308–2318. https://doi.org/10.1111/jbi.13037.

    Article  Google Scholar 

  • Dingerkus, G. & L. D. Uhler, 1977. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technology 52: 229–232.

    Article  CAS  PubMed  Google Scholar 

  • Dunz, A. R. & U. K. Schliewen, 2013. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia”. Molecular Phylogenetics and Evolution 68: 64–80. https://doi.org/10.1016/j.ympev.2013.03.015.

    Article  PubMed  Google Scholar 

  • Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, C., S. Koblmüller, C. Gülly, C. Schlötterer, C. Sturmbauer & G. G. Thallinger, 2013. Complete mitochondrial DNA sequences of the threadfin cichlid (Petrochromis trewavasae) and the blunthead cichlid (Tropheus moorii) and patterns of mitochondrial genome evolution in cichlid fishes. PLoS ONE 8: e67048. https://doi.org/10.1371/journal.pone.0067048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fricke, R., W. N. Eschmeyer & J.D. Fong, 2022. Eschmeyer’s catalog of fishes: species by family/subfamily. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (Electronic version). Accessed 5 August 2022.

  • Genner, M. J., O. Seehausen, D. H. Lunt, D. A. Joyce, P. W. Shaw, G. R. Carvalho & G. F. Turner, 2007. Age of cichlids: new dates for ancient lake fish radiations. Molecular Biology and Evolution 24: 1269–1282. https://doi.org/10.1093/molbev/msm050.

    Article  CAS  PubMed  Google Scholar 

  • Gill, T., 1862. On the West African genus Hemichromis and descriptions of new species in the Museum of the Academy and Smithsonian Institution. Proceedings of the Academy of Natural Sciences Philadelphia 1: 134–139.

    Google Scholar 

  • Goodier, S. A. M., F. P. D. Cotterill, C. O’Ryan, P. H. Skelton & M. J. De Wit, 2011. Cryptic diversity of African tigerfish (genus Hydrocynus) reveals palaeogeographic signatures of linked Neogene geotectonic events. PloS One 6: e28775. https://doi.org/10.1371/journal.pone.0028775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood, P. H., 1985a. Notes on the anatomy and phyletic relationships of Hemichromis Peters, 1858. Bulletin of the British Museum (natural History, Zoological Series) 48: 131–171.

    Google Scholar 

  • Greenwood, P. H., 1985b. The generic status and affinities of Paratilapia thomasi Boulenger, 1915 (Teleostei, Cichlidae). Bulletin of the British Museum (natural History, Zoological Series) 49: 257–272.

    Google Scholar 

  • Günther, A. 1862. Catalogue of the Fishes in the British Museum. IV. Trustees of the British Museum, London.

  • Hall, T. A., 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, Vol. 41. No. 41. London: Information Retrieval Ltd., c1979-c2000.

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologica Electronica 4: 1–9.

    Google Scholar 

  • Irisarri, I., P. Singh, S. Koblmüller, J. Torres-Dowdall, F. Henning, P. Franchini, C. Fischer, A. R. Lemmon, E. Moriarty-Lemmon, G. G. Thallinger, C. Sturmbauer & A. Meyer, 2018. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nature Communications 9: 3159. https://doi.org/10.1038/s41467-018-05479-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haesler & L. S. Jermin, 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantoussan, J., J. M. Ecoutin, M. Simier, L. T. de Moralis & R. Lae, 2012. Effects of salinity on fish assemblage structure: An evaluation based on taxonomic and functional approaches in the Casamance estuary (Senegal, West Africa). Estuarine, Coastal and Shelf Science 113: 152–162. https://doi.org/10.1016/j.ecss.2012.07.018.

    Article  CAS  Google Scholar 

  • Kerschbaumer, M., L. Postl, M. Koch, T. Wiedl & C. Sturmbauer, 2011. Morphological distinctness despite large-scale phenotypic plasticity – analysis of wild and pond-bred juveniles of allopatric populations of Tropheus moori. Naturwissenschaften 98: 125–134. https://doi.org/10.1007/s00114-010-0751-2.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. P., 2016. Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution 226: 113–137. https://doi.org/10.1007/s00427-016-0539-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koblmüller, S., N. Duftner, K. M. Sefc, U. Aigner, M. Rogetzer & C. Sturmbauer, 2009. Phylogeographic structure and gene flow in the scale-eating cichlid Perissodus microlepis (Teleostei, Perciformes, Cichlidae) in southern Lake Tanganyika. Zoologica Scripta 38: 257–268. https://doi.org/10.1111/j.1463-6409.2008.00378.x.

    Article  Google Scholar 

  • Koblmüller, S., B. Nevado, L. Makasa, M. Van Steenberge, M. P. M. Vanhove, E. Verheyen, C. Sturmbauer & K. M. Sefc, 2017. Phylogeny and phylogeography of Altolamprologus: ancient introgression and recent divergence in a rock-dwelling Lake Tanganyika cichlid genus. Hydrobiologia 791: 35–50. https://doi.org/10.1007/s10750-016-2896-2.

    Article  CAS  Google Scholar 

  • Koblmüller, S., C. A. Schöggl, C. J. Lorber, M. Van Steenberge, N. Kmentová, M. P. M. Vanhove & L. Zangl, 2021. African lates perches (Teleostei, Latidae, Lates): paraphyly of Nile perch and recent colonization of Lake Tanganyika. Molecular Phylogenetics and Evolution 160: 107141. https://doi.org/10.1016/j.ympev.2021.107141.

    Article  PubMed  Google Scholar 

  • Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Pääbo, F. X. Villablanca & A. C. Wilson, 1989. Dynamics of mitochondrial-DNA evolution in animals—amplification and sequencing with conserved primers. Proceedings of the Natural Academy of Sciences of United States of America 86: 6196–6200. https://doi.org/10.1073/pnas.86.16.6196.

    Article  CAS  Google Scholar 

  • Lamboj, A., 2004. The Cichlid Fishes of Western Africa, Birgit-Schmettkamp-Verlag, Bornheim:

    Google Scholar 

  • Lessios, H., 2008. The great American schism: divergence of marine organisms after the rise of the Central American Isthmus. Annual Review of Ecology, Evolution and Systematics 39: 63–91. https://doi.org/10.1146/annurev.ecolsys.38.091206.095815.

    Article  Google Scholar 

  • Leveque, C., D. Pauly & G. G. Teugels, 1992. Faune des poissons d’eaux douces et saumâtres de l’Afrique de l’Ouest, Tome 2. MRAC/ORSTOM.

  • Linke, H. & W. Staeck, 2002. Buntbarsche aus Westafrika, Tetra Verlag, Bissendorf:

    Google Scholar 

  • Loiselle, P. V., 1979. A revision of the genus Hemichromis Peters 1858. Annales Musee Royal Afrique Centrale Sciences Zoologiques 228: 1–124.

    Google Scholar 

  • Lopez, J. A., W. Chen & G. Orti, 2004. Esociform phylogeny. Copeia 3: 449–464. https://doi.org/10.1643/CG-03-087R1.

    Article  Google Scholar 

  • Matschiner, M., Z. Muslová, J. M. I. Barth, Z. Starostová, W. Salzburger, M. Steel & R. Bouckaert, 2017. Bayesian phylogenetic estimation of clade ages supports trans-Atlantic dispersal of cichlid fishes. Systematic Biology 66: 3–22. https://doi.org/10.1093/sysbio/syw076.

    Article  PubMed  Google Scholar 

  • Nguyen, L. T., H. A. Schmidt, A. von Haeseler & B. Q. Minh, 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300.

    Article  CAS  PubMed  Google Scholar 

  • Peters, W., 1858 Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königl. Preuß. Akademie der Wissenschaften zu Berlin - Neue Gattung von Chromiden. Monatsberichte der Königlichen Preußischen Akademie der Wissenschaften: 401–403.

  • Rambaut, A., A. J. Drummond, D. Xie, G. Baele & M. A. Suchard, 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Article  PubMed  Google Scholar 

  • Ronco, F., M. Matschiner, A. Böhne, A. Boila, H. H. Büscher, A. EL Taher, A. Indermaur, M. Malinsky, V. Ricci, A. Kahmen, S. Jentoft & W. Salzburger, 2021. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589: 76–81. https://doi.org/10.1038/s41586-020-2930-4.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2001. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029.

    Article  Google Scholar 

  • Salzburger, W., 2018. Understanding explosive diversification through cichlid fish genomics. Nature Review Genetics 19: 705–717. https://doi.org/10.1038/s41576-018-0043-9.

    Article  CAS  Google Scholar 

  • Salzburger, W., B. van Bocxlaer & A. S. Cohen, 2014. Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution and Systematics 45: 519–545. https://doi.org/10.1146/annurev-ecolsys-120213-091804.

    Article  Google Scholar 

  • Schedel, F. D. B., Z. Musilová & U. K. Schliewen, 2019. East African cichlid lineages (Teleostei: Cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation. BMC Evolutionary Biology 19: 94. https://doi.org/10.1186/s12862-019-1417-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarzer, J., B. Misof, S. N. Ifuta & U. K. Schliewen, 2011. Time and origin of cichlid colonization of the Lower Congo rapids. PLoS ONE 6: e22380. https://doi.org/10.1371/journal.pone.0022380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzer, J., A. Lamboj, K. Langen, B. Misof & U. K. Schliewen, 2015. Phylogeny and age of chromidotilapiine cichlids (Teleostei: Cichlidae). Hydrobiologia 748: 185–199. https://doi.org/10.1007/s10750-014-1918-1.

    Article  CAS  Google Scholar 

  • Skelton, P. H., 2019. Freshwater fishes of Angola. In Huntley, B. J., V. Russo, F. Lages & N. Ferrand (eds), Biodiversity of Angola. Science & Conservation: A Modern Synthesis. Springer Open, Cham.

    Google Scholar 

  • Soyinka, O. O., P. K. Minasu & C. I. Ayo-Olalusi, 2010. Seasonal distribution and richness of fish species in the Badagry Lagoon, south-west Nigeria. Estonian Journal of Ecology 59: 147–157. https://doi.org/10.3176/eco.2010.2.05.

    Article  Google Scholar 

  • Steindachner, F., 1865. Description d’une espèce nouvelle du Genre Hemichromis. Memorias Da Academia Real Das Sciencias De Lisboa Classe De Sciencias Mathematicas e Naturaes 3: 5–6.

    Google Scholar 

  • Stewart, K. M., 2001. The freshwater fish of Neogene Africa (Miocene-Pleistocene): systematics and biogeography. Fish and Fisheries 2: 177–230. https://doi.org/10.1046/j.1467-2960.2001.00052.x.

    Article  Google Scholar 

  • Stiassny, M. L. J. & S. E. Alter, 2015. Phylogenetics of Teleogramma, a riverine clade of African cichlid fishes, with a description of the deepwater molluskivore—Teleogramma obamaorum—from the lower reaches of the Middle Congo River. American Museum Novitates 3831: 1–18. https://doi.org/10.1206/3831.1.

    Article  Google Scholar 

  • Takahashi, K., Y. Terai, M. Nishida & N. Okada, 2001. Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Molecular Biology and Evolution 18: 2057–2066. https://doi.org/10.1093/oxfordjournals.molbev.a003747.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, H., J. G. Frommen, S. Koblmüller, K. M. Sefc, M. McGee, M. Kohda, S. Awata, M. Hori & M. Taborsky, 2018. Evolutionary transitions to cooperative societies in fishes revisited. Ethology 124: 777–789. https://doi.org/10.1111/eth.12813.

    Article  Google Scholar 

  • Turmer, G. F., O. Seehausen, M. E. Knight, C. J. Allender & R. L. Robinson, 2001. How many species of cichlid fishes are there in African lakes? Molecular Ecology 10: 793–806. https://doi.org/10.1046/j.1365-294x.2001.01200.x.

    Article  Google Scholar 

  • Van Steenberge, M., J. A. M. Raeymaekers, P. I. Hablützel, M. P. M. Vanhove, S. Koblmüller & J. Snoeks, 2018. Delineating species along shifting shorelines: Tropheus (Teleostei, Cichlidae) from the southern subbasin of Lake Tanganyika. Frontiers in Zoology 15: 42. https://doi.org/10.1186/s12983-018-0287-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Steenberge, M. W., M. P. M. Vanhove, A. Chocha Manda, M. H. D. Larmuseau, B. L. Swart, F. Khang’Mate, A. Arndt, B. Hellemans, J. Van Houdt, J.-C. Micha, S. Koblmüller, R. Roodt-Wilding & F. A. M. Volckaert, 2020. Unravelling the evolution of Africa’s drainage basins through a widespread freshwater fish, the African sharptooth catfish Clarias gariepinus. Journal of Biogeography 47: 1739–1754. https://doi.org/10.1111/jbi.13858.

    Article  Google Scholar 

  • Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506–513. https://doi.org/10.2144/000114018.

    Article  CAS  PubMed  Google Scholar 

  • Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last & P. D. N. Hebert, 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B 360: 1847–1857. https://doi.org/10.1098/rstb.2005.1716.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following people for help in the field, donation or loan of material, providing of photographs, and help in work and/or discussion of the manuscript: B. Brown, R. Schelly, and M. Stiassny (AMNH), M. Parrent, J. Snoeks, and E. Vreven (MRAC), R. Bills (SAIAB), U. Schliewen (ZSM), J. Maclaine (BMNH), G. Duhamel and P. Pruvost (MNHN), A. Wanninger, M. Petrasko, and S. Engelberger (Univ. Vienna), J. Freyhof (Berlin), R. Fischer (Germany), S. Gohmann (Germany), H. van Heusden (Netherlands, S. Inselmann (Germany), O. Lucanus (Canada), A. Oberleuthner (Austria), M. Zapater (Spain). Also special thanks to JBL (Germany) for providing test kits and other material for fieldwork and measuring water parameters and to S. Thornton (USA) for his financial support of field and laboratory work. For permissions for collection and export of preserved and/or living specimens, we thank the Ministry of Agriculture, Fisheries Department, Accra, Ghana; Ministere de la Recherche Scientifique et Technique, Yaounde, Cameroon, P. A. Laleye (Benin), H. Boroubu-Boroubu and P. Posso (Gabon). Also thanks to two anonymous reviewer for their valuable comments. Very special thanks to André Luiz de Oliveira (Univ. Vienna) for all his help with analyzing the DNA data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Lamboj.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests to declare that are relevant to the content of this article.

Additional information

Handling editor: Sidinei M. Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T.Takahashi / Advances in Cichlid Research V: Behavior, Ecology and Evolutionary Biology

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamboj, A., Koblmüller, S. Molecular phylogeny and taxonomic revision of the cichlid genus Hemichromis (Teleostei, Cichliformes, Cichlidae), with description of a new genus and revalidation of H. angolensis. Hydrobiologia 850, 2177–2198 (2023). https://doi.org/10.1007/s10750-022-05060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05060-y

Keywords

Navigation