Skip to main content

Advertisement

Log in

Ecosystem services provided by fungi in freshwaters: a wake-up call

  • AQUATIC ECOSYSTEM SERVICES
  • Review paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The set of functions and resources derived from ecosystems are broadly described as ecosystem services. Human society is gratified by a diverse range of services from the freshwater ecosystems to which fungi contribute significantly; yet they are unacknowledged for the services they provide. Aquatic fungi, especially aquatic hyphomycetes, are a distinct ecological group of organisms, accomplishing critical functions in the freshwater food web dynamics. Here, we conceptualize and categorize ecosystem services provided by aquatic hyphomycetes according to the Millennium Ecosystem Assessment, specifically (i) regulating services, such as leaf litter decomposition and the self-cleaning capacity of freshwaters; (ii) supporting services, like nutrient cycling and bioindicators of environmental conditions; (iii) provisioning services, notably metabolites and clean water; and ultimately (iv) cultural services, particularly educational and inspirational values. Increased awareness and valuation of the ecosystem services delivered by aquatic hyphomycetes is essential to reinforce freshwater ecosystem management and policymaking. Overall, our perspective will serve as a wake-up call to map, quantify, and valorize the critical ecosystem services offered by these fungi across the globe. We also highlight the need to consider interactions between ecosystem services and a consistent life cycle assessment, i.e., from resource extraction to end-of-life disposal, promoting sustainable use of ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

N.A.

References

  • Abdel-Raheem, A. M. & E. H. Ali, 2004. Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia 157(3): 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. L. & C. A. Shearer, 2011. Population genetics of the aquatic fungus Tetracladium marchalianum over space and time. PLoS ONE 6(1): e15908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, J. L. & L. Marvanová, 2020. Broad geographical and ecological diversity from similar genomic toolkits in the ascomycete genus Tetracladium. bioRxiv. https://doi.org/10.1101/2020.04.06.027920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, J. L., Barros, J. & Seena, S. 2022. TeMa Tools: A multilingual & multiformat education toolkit for aquatic fungi. https://doi.org/10.5281/zenodo.7110713.

  • Aroviita, J., H. Mykrä, T. Muotka & H. HämäläInen, 2009. Influence of geographical extent on typology- and model-based assessments of taxonomic completeness of river macroinvertebrates. Freshwater Biology 54(8): 1774–1787.

    Article  Google Scholar 

  • Artigas, J., F. Rossi, M. Gerphagnon & C. Mallet, 2017. Sensitivity of laccase activity to the fungicide tebuconazole in decomposing litter. Science of the Total Environment 584–585: 1084–1092.

    Article  PubMed  Google Scholar 

  • Augustin, T., D. Schlosser, R. Baumbach, J. Schmidt, K. Grancharov, G. Krauss & G.-J. Krauss, 2006. Biotransformation of 1-naphthol by a strictly aquatic fungus. Current Microbiology 52(3): 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, R. C., R. H. Norris & T. B. Reynoldson, 2004. The reference condition approach. In Bailey, R. C., R. H. Norris & T. B. Reynoldson (eds), Bioassessment of Freshwater Ecosystems: Using the Reference Condition Approach Springer US, Boston, MA: 145–152.

    Chapter  Google Scholar 

  • Bandoni, R. J., 1972. Terrestrial occurrence of some aquatic hyphomycetes. Canadian Journal of Botany 50(11): 2283–2288.

    Article  Google Scholar 

  • Bärlocher, F., 2010. Molecular approaches promise a deeper and broader understanding of the evolutionary ecology of aquatic hyphomycetes. Journal of the North American Benthological Society 29(3): 1027–1041.

    Article  Google Scholar 

  • Bärlocher, F., 2016. Aquatic hyphomycetes in a changing environment. Fungal Ecology 19: 14–27.

    Article  Google Scholar 

  • Bärlocher, F. & B. Kendrick, 1974. Dynamics of the fungal population on leaves in a stream. Journal of Ecology 62(3): 761–791.

    Article  Google Scholar 

  • Barros, J. & S. Seena, 2022. Fungi in freshwaters: prioritising aquatic hyphomycetes in conservation goals. Water 14(4): 605.

    Article  CAS  Google Scholar 

  • Baschien, C., C. K. M. Tsui, V. Gulis, U. Szewzyk & L. Marvanová, 2013. The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biology 117(9): 660–672.

    Article  PubMed  Google Scholar 

  • Batista, D., C. Pascoal & F. Cássio, 2012. Impacts of warming on aquatic decomposers along a gradient of cadmium stress. Environmental Pollution 169: 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Baudy, P., J. P. Zubrod, M. Konschak, N. Röder, T. H. Nguyen, V. C. Schreiner, C. Baschien, R. Schulz & M. Bundschuh, 2021a. Environmentally relevant fungicide levels modify fungal community composition and interactions but not functioning. Environmental Pollution 285: 117234.

    Article  CAS  PubMed  Google Scholar 

  • Baudy, P., J. P. Zubrod, M. Konschak, S. Kolbenschlag, A. Pollitt, C. Baschien, R. Schulz & M. Bundschuh, 2021b. Fungal–fungal and fungal–bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity. Ecology 102(10): e03471.

    Article  PubMed  Google Scholar 

  • Bennett, E. M., G. D. Peterson & L. J. Gordon, 2009. Understanding relationships among multiple ecosystem services. Ecology Letters 12(12): 1394–1404.

    Article  PubMed  Google Scholar 

  • Bernhardt, E. S., E. J. Rosi & M. O. Gessner, 2017. Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment 15(2): 84–90.

    Article  Google Scholar 

  • Birkhofer, K., E. Diehl, J. Andersson, J. Ekroos, A. Früh-Müller, F. Machnikowski, V. L. Mader, L. Nilsson, K. Sasaki, M. Rundlöf, V. Wolters & H. G. Smith, 2015. Ecosystem services-current challenges and opportunities for ecological research. Frontiers in Ecology and Evolution 2. https://doi.org/10.3389/fevo.2014.00087.

    Article  Google Scholar 

  • Boyd, J. & L. Wainger, 2003. Measuring ecosystem service benefits: the use of landscape analysis to evaluate environmental trades and compensation. Discussion Papers 10738, Resources for the Future.

  • Brown, C., B. Reyers, L. Ingwall-King, A. Mapendembe, J. Nel, P. O’farrell, M. Dixon & N. Bowles-Newark, 2014. Measuring Ecosystem Services: Guidance on Developing Ecosystem Service Indicators, UNEP-WCMC, Cambridge, UK.

    Google Scholar 

  • Campbell, J., L. Marvanová & V. Gulis, 2009. Evolutionary relationships between aquatic anamorphs and teleomorphs: Tricladium and Varicosporium. Mycological Research 113(11): 1322–1334.

    Article  PubMed  Google Scholar 

  • Canhoto, C., A. L. Gonçalves & F. Bärlocher, 2016. Biology and ecological functions of aquatic hyphomycetes in a warming climate. Fungal Ecology 19: 201–218.

    Article  Google Scholar 

  • Carstens, L., A. R. Cowan, B. Seiwert & D. Schlosser, 2020. Biotransformation of phthalate plasticizers and bisphenol a by marine-derived, freshwater, and terrestrial fungi. Frontiers in Microbiology 11: 317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas, J., J. Toja, S. Bonachela, F. Fuentes, I. Gallego, M. Juan, D. León, P. Peñalver, C. Pérez & P. Sánchez, 2011. Artificial ponds in a Mediterranean region (Andalusia, southern Spain): agricultural and environmental issues. Water and Environment Journal 25: 308–317.

    Article  CAS  Google Scholar 

  • Chauvet, E., J. Cornut, K. R. Sridhar, M.-A. Selosse & F. Bärlocher, 2016. Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecology 19: 112–127.

    Article  Google Scholar 

  • Clarke, P. H., J. R. Postgate & C. J. Duggleby, 1980. Microbiology and pollution: the biodegradation of natural and synthetic organic compounds [and discussion]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 290(1040): 355–367.

    CAS  Google Scholar 

  • Clarke, R. T., J. F. Wright & M. T. Furse, 2003. RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160(3): 219–233.

    Article  Google Scholar 

  • Cornut, J., E. Chauvet, F. Mermillod-Blondin, F. Assemat & A. Elger, 2014. Aquatic hyphomycete species are screened by the hyporheic zone of woodland streams. Applied and Environmental Microbiology 80(6): 1949–1960.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt, 1997. The value of the world’s ecosystem services and natural capital. Nature 387(6630): 253–260.

    Article  CAS  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • da Silva, G. V. R., R. F. Castañeda-Ruiz & E. Malosso, 2019. Comparison of aquatic hyphomycetes communities between lotic and lentic environments in the Atlantic rain forest of Pernambuco, Northeast Brazil. Fungal Biology 123(9): 660–668.

    Article  PubMed  Google Scholar 

  • Dalton, S. A., M. Hodkinson & K. A. Smith, 1970. Interactions between DDT and river fungi. I. Effects of p, p′-DDT on the growth of aquatic hyphomycetes. Applied Microbiology 20(5): 662–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangles, O. & E. Chauvet, 2003. Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability. Water Research 37(3): 533–538.

    Article  CAS  PubMed  Google Scholar 

  • De Groot, R. S., M. A. Wilson & R. M. Boumans, 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41(3): 393–408.

    Article  Google Scholar 

  • Devi, R., T. Kaur, G. Guleria, K. L. Rana, D. Kour, N. Yadav, A. N. Yadav & A. K. Saxena, 2020. Chapter 9 – fungal secondary metabolites and their biotechnological applications for human health. In Rastegari, A. A., A. N. Yadav & N. Yadav (eds), New and Future Developments in Microbial Biotechnology and Bioengineering Elsevier, Amsterdam: 147–161.

    Chapter  Google Scholar 

  • Dick, J., J. Maes, R. I. Smith, M. L. Paracchini & G. Zulian, 2014. Cross-scale analysis of ecosystem services identified and assessed at local and European level. Ecological Indicators 38: 20–30.

    Article  Google Scholar 

  • Dighton, J., 2018. Fungi in Ecosystem Processes, CRC Press, Boca Raton, USA.

    Book  Google Scholar 

  • Duarte, S., F. Cássio, C. Pascoal & F. Bärlocher, 2017. Taxa-area relationship of aquatic fungi on deciduous leaves. PLoS ONE 12(7): e0181545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny, et al., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • El-Elimat, T., H. A. Raja, M. Figueroa, A. H. Al Sharie, R. L. Bunch & N. H. Oberlies, 2021. Freshwater fungi as a source of chemical diversity: a review. Journal of Natural Products 84(3): 898–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feio, M. J., T. B. Reynoldson, V. Ferreira & M. A. S. Graça, 2007. A predictive model for freshwater bioassessment (Mondego River, Portugal). Hydrobiologia 589(1): 55–68.

    Article  CAS  Google Scholar 

  • Fenoy, E., A. Pradhan, C. Pascoal, J. Rubio-Ríos, D. Batista, F. J. Moyano-López, F. Cássio & J. J. Casas, 2022. Elevated temperature may reduce functional but not taxonomic diversity of fungal assemblages on decomposing leaf litter in streams. Global Change Biology 28(1): 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes, I., C. Pascoal & F. Cássio, 2011. Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia 166(4): 1019–1028.

    Article  PubMed  Google Scholar 

  • Ferreira, V., B. Castagneyrol, J. Koricheva, V. Gulis, E. Chauvet & M. A. S. Graça, 2015. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews 90(3): 669–688.

    Article  PubMed  Google Scholar 

  • Field, C. B., J. T. Randerson & C. M. Malmström, 1995. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment 51(1): 74–88.

    Article  Google Scholar 

  • Fuentes-Cid, A., E. Chauvet, H. Etcheber, E. De-Oliveira, A. Sottolichio & S. Schmidt, 2015. Leaf litter degradation in highly turbid transitional waters: preliminary results from litter-bag experiments in the Gironde Estuary. Geodinamica Acta 27(1): 60–66.

    Article  Google Scholar 

  • Geraldes, P., C. Pascoal & F. Cássio, 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5(6): 734–740.

    Article  Google Scholar 

  • Gesell, M., E. Hammer, M. Specht, W. Francke & F. Schauer, 2001. Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Applied and Environmental Microbiology 67(4): 1551–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85(2): 377–384.

    Article  Google Scholar 

  • Gessner, M. O., V. Gulis, K. A. Kuehn, E. Chauvet & K. Suberkropp, 2007. Fungal decomposers of plant litter in aquatic ecosystems. In Kubicek, C. P. & I. S. Druzhinina (eds), Environmental and Microbial Relationships Springer, Berlin, Heidelberg: 301–324.

    Google Scholar 

  • Gianinazzi, S., A. Gollotte, M. N. Binet, D. van Tuinen, D. Redecker & D. Wipf, 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8): 519–530.

    Article  PubMed  Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams – a review. International Review of Hydrobiology 86(4–5): 383–393.

    Article  Google Scholar 

  • Graça, M. A. S., V. Ferreira, C. Canhoto, A. C. Encalada, F. Guerrero-Bolaño, K. M. Wantzen & L. Boyero, 2015. A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100(1): 1–12.

    Article  Google Scholar 

  • Gregory, T. R., 2009. Understanding natural selection: essential concepts and common misconceptions. Evolution: Education and Outreach 2(2): 156–175.

    Google Scholar 

  • Grossart, H.-P., S. Van den Wyngaert, M. Kagami, C. Wurzbacher, M. Cunliffe & K. Rojas-Jimenez, 2019. Fungi in aquatic ecosystems. Nature Reviews Microbiology 17(6): 339–354.

    Article  CAS  PubMed  Google Scholar 

  • Gulis, V., L. Marvanová & E. Descals, 2005. An illustrated key to the common temperate species of aquatic hyphomycetes. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide Springer Netherlands, Dordrecht: 153–167.

    Chapter  Google Scholar 

  • Gulis, V., K. Kuehn & K. Suberkropp, 2006. The role of fungi in carbon and nitrogen cycles in freshwater ecosystems. In Gadd, G. M. (ed), Fungi in Biogeochemical Cycles. British Mycological Society Symposia Cambridge University Press, Cambridge: 404–435.

    Chapter  Google Scholar 

  • Han, C., H. Furukawa, T. Tomura, R. Fudou, K. Kaida, B.-K. Choi, G. Imokawa & M. Ojika, 2015. Bioactive maleic anhydrides and related diacids from the aquatic hyphomycete Tricladium castaneicola. Journal of Natural Products 78(4): 639–644.

    Article  CAS  PubMed  Google Scholar 

  • Harrigan, G. G., B. L. Armentrout, J. B. Gloer & C. A. Shearer, 1995. Anguillosporal, a new antibacterial and antifungal metabolite from the freshwater fungus Anguillospora longissima. Journal of Natural Products 58(9): 1467–1469.

    Article  CAS  PubMed  Google Scholar 

  • Heather, J. M. & B. Chain, 2016. The sequence of sequencers: the history of sequencing DNA. Genomics 107(1): 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Heeger, F., E. C. Bourne, C. Wurzbacher, E. Funke, A. Lipzen, G. He, V. Ng, I. V. Grigoriev, D. Schlosser & M. T. Monaghan, 2021. Evidence for lignocellulose-decomposing enzymes in the genome and transcriptome of the aquatic hyphomycete Clavariopsis aquatica. Journal of Fungi 7(10): 854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heino, J., T. Muotka, H. Mykrä, R. Paavola, H. Hämäläinen & E. Koskenniemi, 2003. Defining macroinvertebrtae assemblage types of headwater streams: implications for bioassessment and conservation. Ecological Applications 13(3): 842–852.

    Article  Google Scholar 

  • Heino, J., M. Tolkkinen, A. M. Pirttilä, H. Aisala & H. Mykrä, 2014. Microbial diversity and community–environment relationships in boreal streams. Journal of Biogeography 41(12): 2234–2244.

    Article  Google Scholar 

  • Hodkinson, M. & S. A. Dalton, 1973. Interactions between DDT and river fungi. Bulletin of Environmental Contamination and Toxicology 10(6): 356–359.

    Article  CAS  PubMed  Google Scholar 

  • Holzman, D. C., 2012. Accounting for nature’s benefits: the dollar value of ecosystem services. Environmental Health Perspectives 120(4): A152–A157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingold, C. T., 1942. Aquatic hyphomycetes of decaying alder leaves. Transactions of the British Mycological Society 25: 339-416.

    Article  Google Scholar 

  • Ingold, C. T., 1976. Aquatic nightmare. Bulletin of the British Mycological Society 10(2): 80–81.

    Article  Google Scholar 

  • Johnston, P. R., L. Quijada, C. A. Smith, H. O. Baral, T. Hosoya, C. Baschien, K. Partel, W.-Y. Zhuang, D. Haelewaters, D. Park, S. Carl, F. Lopez-Giraldez, Z. Wang & J. P. Townsend, 2019. A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 10. https://doi.org/10.1186/s43008-019-0002-x.

    Article  Google Scholar 

  • Junghanns, C., M. Moeder, G. Krauss, C. Martin & D. Schlosser, 2005. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151(1): 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Jyväsjärvi, J., K. Lehosmaa, J. Aroviita, J. Turunen, M. Rajakallio, H. Marttila, M. Tolkkinen, H. Mykrä & T. Muotka, 2021. Fungal assemblages in predictive stream bioassessment: a cross-taxon comparison along multiple stressor gradients. Ecological Indicators 121: 106986.

    Article  Google Scholar 

  • Kaida, K., R. Fudou, T. Kameyama, K. Tubaki, Y. Suzuki, M. Ojika & Y. Sakagami, 2001. New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycetes, Clavariopsis aquatica. 1. Taxonomy, fermentation, isolation, and biological properties. The Journal of Antibiotics 54(1): 17–21.

    Article  CAS  PubMed  Google Scholar 

  • Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of the dead leaves that fall into streams. Archiv für Hydrobiologie 68: 465–515.

    Google Scholar 

  • Krauss, G., K. R. Sridhar, K. Jung, R. Wennrich, J. Ehrman & F. Bärlocher, 2003. Aquatic hyphomycetes in polluted groundwater habitats of central Germany. Microbial Ecology 45(4): 329–339.

    CAS  PubMed  Google Scholar 

  • Kremen, C., 2005. Managing ecosystem services: what do we need to know about their ecology? Ecology Letters 8(5): 468–479.

    Article  PubMed  Google Scholar 

  • Kumar, V., V. V. Sarma, K. M. Thambugala, J.-J. Huang, X.-Y. Li & G.-F. Hao, 2021. Ecology and evolution of marine fungi with their adaptation to climate change. Frontiers in Microbiology 12: 719000–719000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, P., C. Peng, M. Wang, W. Li, P. Zhao, K. Wang, Y. Yang & Q. Zhu, 2017. Quantification of the response of global terrestrial net primary production to multifactor global change. Ecological Indicators 76: 245–255.

    Article  CAS  Google Scholar 

  • Magyar, D., J. T. Van Stan & K. R. Sridhar, 2021. Hypothesis and theory: fungal spores in stemflow and potential bark sources. Frontiers in Forests and Global Change. https://doi.org/10.3389/ffgc.2021.623758.

    Article  Google Scholar 

  • Makiola, A., I. A. Dickie, R. J. Holdaway, J. R. Wood, K. H. Orwin, C. K. Lee & T. R. Glare, 2019. Biases in the metabarcoding of plant pathogens using rust fungi as a model system. MicrobiologyOpen 8(7): e00780.

    Article  PubMed  Google Scholar 

  • Marco-Urrea, E., M. Pérez-Trujillo, T. Vicent & G. Caminal, 2009. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74(6): 765–772.

    Article  CAS  PubMed  Google Scholar 

  • Mariz, J., R. Franco-Duarte, F. Cássio, C. Pascoal & I. Fernandes, 2021. Aquatic hyphomycete taxonomic relatedness translates into lower genetic divergence of the nitrate reductase gene. Journal of Fungi 7(12): 1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, C., M. Moeder, X. Daniel, G. Krauss & D. Schlosser, 2007. Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments. Environmental Science & Technology 41(15): 5395–5402.

    Article  CAS  Google Scholar 

  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore, C. J. Vorosmarty & A. L. Schloss, 1993. Global climate change and terrestrial net primary production. Nature 363(6426): 234–240.

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment, 2005a. Ecosystems and Human Well-Being: Current State and Trends, Island Press, Washington D.C, USA.

    Google Scholar 

  • Millennium Ecosystem Assessment, 2005b. Ecosystems and Human Well-Being: Multiscale Assessments, Island Press, Washington D.C, USA.

    Google Scholar 

  • Millennium Ecosystem Assessment, 2005c. Ecosystems and Human Well-Being: Policy Responses, Island Press, Washington D.C, USA.

    Google Scholar 

  • Millennium Ecosystem Assessment, 2005d. Ecosystems and Human Well-Being: Scenarios, Island Press, Washington D.C, USA.

    Google Scholar 

  • Millennium Ecosystem Assessment, 2005e. Ecosystems and Human Well-Being: Synthesis, Island Press, Washington, D.C, USA.

    Google Scholar 

  • Mouele, E. S. M., J. O. Tijani, O. O. Fatoba & L. F. Petrik, 2015. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations – a critical review. Environmental Science and Pollution Research 22(23): 18345–18362.

    Article  CAS  PubMed  Google Scholar 

  • Nair, R. R., P. Demarche & S. N. Agathos, 2013. Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater. Nature Biotechnology 30(6): 814–823.

    CAS  Google Scholar 

  • Nikolcheva, L. G., A. M. Cockshutt & F. Bärlocher, 2003. Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Applied Environmental Microbiology 69(5): 2548–2554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes, C. S. & K. Malmlöf, 2018. Enzymatic decontamination of antimicrobials, phenols, heavy metals, pesticides, polycyclic aromatic hydrocarbons, dyes, and animal waste. In Nunes, C. S. & V. Kumar (eds), Enzymes in Human and Animal Nutrition Elsevier, Amsterdam: 331–359.

    Chapter  Google Scholar 

  • Oh, H., T. O. Kwon, J. B. Gloer, L. Marvanová & C. A. Shearer, 1999. Tenellic acids A–D: new bioactive diphenyl ether derivatives from the aquatic fungus Dendrospora tenella. Journal of Natural Products 62(4): 580–583.

    Article  CAS  PubMed  Google Scholar 

  • Otto, S. P., 2018. Adaptation, speciation and extinction in the Anthropocene. Proceedings Biological Sciences 285(1891): 20182047.

    PubMed  PubMed Central  Google Scholar 

  • Pascoal, C., I. Fernandes, S. Seena, M. Danger, V. Ferreira & F. Cássio, 2021. Linking microbial decomposer diversity to plant litter decomposition and associated processes in streams. In Swan, C. M., L. Boyero & C. Canhoto (eds), The Ecology of Plant Litter Decomposition in Stream Ecosystems Springer International Publishing, Cham: 163–192.

    Chapter  Google Scholar 

  • Potschin, M. B. & R. H. Haines-Young, 2011. Ecosystem services: exploring a geographical perspective. Progress in Physical Geography: Earth and Environment 35: 575–594.

    Article  Google Scholar 

  • Quainoo, S., S. Seena & M. A. S. Graça, 2016. Copper tolerant ecotypes of Heliscus lugdunensis differ in their ecological function and growth. Science of the Total Environment 544: 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar, C., D. D’Souza-Ticlo & A. Verma, 2008. Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Critical Reviews in Microbiology 34(3–4): 189–206.

    Article  CAS  PubMed  Google Scholar 

  • Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16(4): 833–852.

    Article  Google Scholar 

  • Richardson, J. S. & D. E. Hanna, 2021. Leaf litter decomposition as a contributor to ecosystem service provision. In Swan, C. M., L. Boyero & C. Canhoto (eds), The Ecology of Plant Litter Decomposition in Stream Ecosystems Springer, Cham: 511–523.

    Chapter  Google Scholar 

  • Roger, F., A. Godhe & L. Gamfeldt, 2012. Genetic diversity and ecosystem functioning in the face of multiple stressors. PLoS ONE 7(9): e45007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccá, M. L., A. Barra Caracciolo, M. D. Lenola & P. Grenni, 2017. Ecosystem Services Provided by Soil Microorganisms Soil Biological Communities and Ecosystem Resilience, Springer, Cham:, 9–24.

    Book  Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, et al., 2000. Global biodiversity scenarios for the year 2100. American Association for the Advancement of Science 287: 1770–1774.

    Article  CAS  Google Scholar 

  • Sati, S. & P. Arya, 2010. Assessment of root endophytic aquatic hyphomycetous fungi on plant growth. Symbiosis 50(3): 143–149.

    Article  Google Scholar 

  • Sati, S. C. & P. Pant, 2019. Evaluation of phosphate solubilization by root endophytic aquatic hyphomycete Tetracladium setigerum. Symbiosis 77(2): 141–145.

    Article  Google Scholar 

  • Sati, S. C. & L. Singh, 2014. Bioactivity of root endophytic freshwater hyphomycetes Anguillospora longissima (Sacc. & Syd.) Ingold. The Scientific World Journal 2014: 707368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seena, S. & S. Monroy, 2016. Preliminary insights into the evolutionary relationships of aquatic hyphomycetes and endophytic fungi. Fungal Ecology 19: 128–134.

    Article  Google Scholar 

  • Seena, S., N. Wynberg & F. Bärlocher, 2008. Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Diversity 30: 1–14.

    Google Scholar 

  • Seena, S., S. Duarte, C. Pascoal & F. Cássio, 2012. Intraspecific variation of the aquatic fungus Articulospora tetracladia: an ubiquitous perspective. PLoS ONE 7(4): e35884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seena, S., L. Marvanová, A. Letourneau & F. Bärlocher, 2018. Articulospora – phylogeny vs morphology. Fungal Biology 122(10): 965–976.

    Article  PubMed  Google Scholar 

  • Seena, S., F. Bärlocher, O. Sobral, M. O. Gessner, D. Dudgeon, B. G. McKie, E. Chauvet, L. Boyero, V. Ferreira, A. Frainer, A. Bruder, C. D. Matthaei, S. Fenoglio, K. R. Sridhar, R. J. Albariño, M. M. Douglas, A. C. Encalada, E. Garcia, S. D. Ghate, D. P. Giling, V. Gonçalves, T. Iwata, A. Landeira-Dabarca, D. McMaster, A. O. Medeiros, J. Naggea, J. Pozo, P. M. Raposeiro, C. M. Swan, N. S. D. Tenkiano, C. M. Yule & M. A. S. Graça, 2019. Biodiversity of leaf litter fungi in streams along a latitudinal gradient. Science of the Total Environment 661: 306–315.

    Article  CAS  PubMed  Google Scholar 

  • Seena, S., O. Sobral & A. Cano, 2020. Metabolomic, functional, and ecologic responses of the common freshwater fungus Neonectria lugdunensis to mine drainage stress. Science of the Total Environment 718: 137359.

    Article  CAS  PubMed  Google Scholar 

  • Shearer, C. A., E. Descals, B. Kohlmeyer, J. Kohlmeyer, L. Marvanová, D. Padgett, D. Porter, H. A. Raja, J. P. Schmit, H. A. Thorton & H. Voglymayr, 2007. Fungal biodiversity in aquatic habitats. Biodiversity and Conservation 16(1): 49–67.

    Article  Google Scholar 

  • Shiklomanov, I. A., 1993. World fresh water resource. In Gleick, P. H. (ed), Water Crisis: A Guide to World Fresh Water Resources. Oxford University Press, Oxford.

    Google Scholar 

  • Small, N., M. Munday & I. Durance, 2017. The challenge of valuing ecosystem services that have no material benefits. Global Environmental Change 44: 57–67.

    Article  Google Scholar 

  • Soe, T. W., C. Han, R. Fudou, K. Kaida, Y. Sawaki, T. Tomura & M. Ojika, 2019. Clavariopsins C-I, antifungal cyclic depsipeptides from the aquatic hyphomycete Clavariopsis aquatica. Journal of Natural Products 82(7): 1971–1978.

    Article  CAS  PubMed  Google Scholar 

  • Solé, M., I. Müller, J. Pecyna Marek, I. Fetzer, H. Harms & D. Schlosser, 2012. Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic hyphomycete Clavariopsis aquatica. Applied and Environmental Microbiology 78(13): 4732–4739.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadler, M. & N. P. Keller, 2008. Paradigm shifts in fungal secondary metabolite research. Mycological Research 112(Pt 2): 127–130.

    Article  CAS  PubMed  Google Scholar 

  • Stange, M., R. D. H. Barrett & A. P. Hendry, 2021. The importance of genomic variation for biodiversity, ecosystems and people. Nature Reviews Genetics 22(2): 89–105.

    Article  CAS  PubMed  Google Scholar 

  • Suberkropp, K. & M. J. Klug, 1980. The maceration of deciduous leaf litter by aquatic hyphomycetes. Canadian Journal of Botany 58: 1025–1031.

    Article  CAS  Google Scholar 

  • Suberkropp, K., T. L. Arsuffi & J. P. Anderson, 1983. Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter. Applied and Environmental Microbiology 46(1): 237–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swan, C. M., 2021. Biodiversity and plant litter decomposition in streams. In Swan, C. M., L. Boyero & C. Canhoto (eds), The Ecology of Plant Litter Decomposition in Stream Ecosystems Springer International Publishing, Cham: 129–142.

    Chapter  Google Scholar 

  • Thomaz, S. M., 2021. Ecosystem services provided by freshwater macrophytes. Hydrobiologia. https://doi.org/10.1007/s10750-021-04739-y.

    Article  Google Scholar 

  • Tolkkinen, M., H. Mykrä, A.-M. Markkola, H. Aisala, K.-M. Vuori, J. Lumme, A. M. Pirttilä & T. Muotka, 2013. Decomposer communities in human-impacted streams: species dominance rather than richness affects leaf decomposition. Journal of Applied Ecology 50(5): 1142–1151.

    Article  CAS  Google Scholar 

  • Tonin, A. M., L. U. Hepp & J. F. Gonçalves, 2018. Spatial variability of plant litter decomposition in stream networks: from litter bags to watersheds. Ecosystems 21(3): 567–581.

    Article  Google Scholar 

  • Townsend, C. R., M. Begon & J. L. Harper, 2015. Essentials of Ecology, Vol. 3. Wiley-Blackwell, New York, USA.

    Google Scholar 

  • Tsui, C. K. M., C. Baschien & T.-K. Goh, 2016. Biology and ecology of freshwater fungi. In Li, D.-W. (ed), Biology of Microfungi Springer International Publishing, Cham: 285–313.

    Chapter  Google Scholar 

  • Van Geel, M., T. Aavik, T. Ceulemans, S. Träger, J. Mergeay, G. Peeters, K. van Acker, M. Zobel, K. Koorem & O. Honnay, 2021. The role of genetic diversity and arbuscular mycorrhizal fungal diversity in population recovery of the semi-natural grassland plant species Succisa pratensis. BMC Ecology and Evolution 21(1): 200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vass, M., Á. Révay, T. Kucserka, K. Hubai, V. Üveges, K. Kovács & J. Padisák, 2013. Aquatic hyphomycetes as survivors and/or first colonizers after a red sludge disaster in the Torna stream, Hungary. International Review of Hydrobiology 98: 217–224.

    Article  CAS  Google Scholar 

  • Vaughn, C. C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810(1): 15–27.

    Article  Google Scholar 

  • Verdin, A., A.L.-H. Sahraoui & R. Durand, 2004. Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. International Biodeterioration & Biodegradation 53(2): 65–70.

    Article  CAS  Google Scholar 

  • Vinale, F., G. Manganiello, M. Nigro, P. Mazzei, A. Piccolo, A. Pascale, M. Ruocco, R. Marra, N. Lombardi, S. Lanzuise, R. Varlese, P. Cavallo, M. Lorito & S. L. Woo, 2014. A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 19(7): 9760–9772.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  PubMed  Google Scholar 

  • Zemek, J., L. Marvanová, Ľ Kuniak & B. Kadlečíková, 1985. Hydrolytic enzymes in aquatic hyphomycetes. Folia Microbiologica 30(4): 363–372.

    Article  CAS  Google Scholar 

  • Zhang, Y., S. Singh & B. R. Bakshi, 2010. Accounting for ecosystem services in life cycle assessment, part I: a critical review. Environmental Science & Technology 44(7): 2232–2242.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financed by the Portuguese Foundation for Science and Technology (FCT) within the scope of the projects (UIDB/04292/2020, LA/P/0069/2020) granted to Marine and Environmental Sciences Center (MARE). S. Seena (IT057-18-7254) acknowledges the University of Coimbra for the contract.

Funding

This study is supported by the Fundação para a Ciência e a Tecnologia (Grant No. UIDB/04292/2020 and LA/P/0069/2020).

Author information

Authors and Affiliations

Authors

Contributions

SS conceptualized the review. All authors contributed to manuscript sections, revised, and approved the final version.

Corresponding author

Correspondence to Sahadevan Seena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

N.A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Verónica Ferreira, Luis Mauricio Bini, Katya E. Kovalenko, Andre A. Padial, Judit Padisák, & María de los Ángeles González Sagrario /Aquatic Ecosystem Services

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seena, S., Baschien, C., Barros, J. et al. Ecosystem services provided by fungi in freshwaters: a wake-up call. Hydrobiologia 850, 2779–2794 (2023). https://doi.org/10.1007/s10750-022-05030-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05030-4

Keywords

Navigation