Skip to main content

Advertisement

Log in

Intermediate disturbance hypothesis explains eutrophication and biodiversity pattern in a boreal river basin, China

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Eutrophication is a common phenomenon in aquatic ecosystems caused by human disturbance and is regarded as one of the major threats to biodiversity in rivers throughout the world. However, no consistent pattern explains the relationship between eutrophication and biodiversity in rivers. In the present work, we explored fieldwork in connection to the influence of eutrophication on biodiversity in nine streams in a boreal river ecosystem in China. We aimed to test the intermediate disturbance hypothesis (IDH) in our model, which predicts that biodiversity reaches its maximum at intermediate disturbance. We used total phosphorus (TP) as a direct indicator of eutrophication and divided TP concentration into five levels of eutrophication, which represented anthropogenic disturbance of varied intensity. The results obtained from periphyton, macroinvertebrate, and fish assemblages showed that species richness was higher at intermediate eutrophication levels, and the pattern was not impacted by other factors. Our findings may provide important insights into the influence of anthropogenic disturbance on biodiversity in stream ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Allan, J. D., M. M. Castillo & K. A. Capps, 2007. Stream Ecology: Structure and Function of Running Waters, 2nd ed. Springer, Dordrecht:

    Book  Google Scholar 

  • Arslan, N., A. Salur, H. Kalyoncu, D. Mercan, B. Barişik & D. A. Odabaşi, 2016. The use of BMWP and ASPT indices for evaluation of water quality according to macroinvertebrates in Küçük Menderes River (Turkey). Biologia 71: 49–57.

    Article  Google Scholar 

  • Baert, J. M., F. De Laender, K. Sabbe & C. R. Janssen, 2016. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology 97: 3433–3440.

    Article  PubMed  Google Scholar 

  • Baron, J. S., N. L. Poff, P. L. Angermeier, C. N. Dahm, P. H. Gleick, N. G. Hairston Jr. & A. D. Steinman, 2002. Meeting ecological and societal needs for freshwater. Ecological Applications 12: 1247–1260.

    Article  Google Scholar 

  • Bongers, F., L. Poorter, W. D. Hawthorne & D. Sheil, 2010. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecology Letters 12: 798–805.

    Article  Google Scholar 

  • Brinkhurst, R. O. & D. G. Cook, 1974. Aquatic earth worms (Annelida: Oligochaeta). In Hart, C. W. & S. L. H. Fuller (eds), Pollution Ecology of Freshwater Invertebrates Academic, New York: 143–156.

    Google Scholar 

  • Budka, A., A. Łacka & K. Szoszkiewicz, 2019. The use of rarefaction and extrapolation as methods of estimating the effects of river eutrophication on macrophyte diversity. Biodiversity and Conservation 28: 385–400.

    Article  Google Scholar 

  • Celekli, A., S. Kayhan, Ö. Lekesiz, A. A. Toudjani & T. Çetin, 2019. Limno-ecological assessment of Aras River surface waters in Turkey: application of diatom indices. Environmental Science and Pollution Research 26: 8028–8038.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D. N. & G. Q. Zhang, 2002. Fauna Sinica Phylum Mollusca Class Gastropoda, Science Press, Beijing: (in Chinese).

    Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Dimitriou, K. G., E. G. Kotsonas, D. E. Bakaloudis, C. G. Vlachos, G. J. Holloway & R. Yosef, 2021. Population viability and conservation strategies for the Eurasian black vulture (Aegypius monachus) in southeast Europe. Animals: An Open Access Journal from MDPI 11: 124.

    Article  Google Scholar 

  • Downing, A. L. & M. A. Leibold, 2010. Species richness facilitates ecosystem resilience in aquatic food webs. Freshwater Biology 55: 2123–2137.

    Article  Google Scholar 

  • Dudgeon, D., 2017. Freshwater biodiversity under global threat: what are the risks from invasive species in Asia? In Aquatic Alien Invasive Species in Southeast Asia (AIASSEA) Symposium 2017: 26–27.

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnology and Oceanography 44: 1114–1119.

    Article  Google Scholar 

  • Gaedeke, A. & U. Sommer, 1986. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71: 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Gong, Z. & P. Xie, 2001. Impact of eutrophication on biodiversity of the macrozoobenthos community in a Chinese shallow lake. Journal of Freshwater Ecology 16: 171–178.

    Article  CAS  Google Scholar 

  • Hassan, R., R. Scholes & N. Ash, 2005. Ecosystems and human well-being: current state and trends. Journal of Bacteriology 1: 1387–1404.

    Google Scholar 

  • Hope, J. A., J. Hewitt, C. A. Pilditch, C. Savage & S. F. Thrush, 2020. Effect of nutrient enrichment and turbidity on interactions between microphytobenthos and a key bivalve: implications for higher trophic levels. Frontiers in Marine Science 7: 695.

    Article  Google Scholar 

  • Hu, H. J. & Y. X. Wei, 2006. The Freshwater Algae of China: Systematics, Taxonomy and Ecology, Science Press, Beijing: (in Chinese).

    Google Scholar 

  • Hubbell, S. P., R. B. Foster, S. T. Brien, K. E. Harms, R. Condit, B. Wechsler, S. J. Wright & S. Loo de Lao, 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical forest. Science 283: 554–557.

    Article  CAS  PubMed  Google Scholar 

  • Isbell, F., D. Craven, J. Connolly, M. Loreau, B. Schmid, C. Beierkuhnlein & N. Eisenhauer, 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526: 574–577.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen, B. A. & P. Simonsen, 1993. Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia 249: 9–14.

    Article  Google Scholar 

  • Jung, S. J., C. M. Lee & T. S. Kwon, 2013. Effects of forest roads on hemipteran diversity in Mt. Gariwang, Korea test of intermediate disturbance hypothesis. Journal of Asia–Pacific Biodiversity 6: 239–248.

    Article  Google Scholar 

  • Kawai, T. & K. Tanida, 2005. Aquatic Insects of Japan: Manual with Keys and Illustrations, Tokai University Press, Hadano: (in Japanese).

    Google Scholar 

  • Kolzau, S., C. Wiedner, J. Rücker, J. Köhler, A. Köhler & A. M. Dolman, 2014. Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from ambient nutrient concentrations. PLoS ONE 9: e96065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovács, C., M. Kahlert & J. Padisák, 2006. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. Journal of Applied Phycology 18: 105–117.

    Article  CAS  Google Scholar 

  • Lange-Bertalot, H., G. Hofmann, M. Werum & M. Cantonati, 2017. Freshwater benthic diatoms of Central Europe: over 800 common species used in ecological assessment. In Cantonati, M., M. G. Kelly & H. Lange-Bertalot (eds), English Edition with Updated Taxonomy and Added Species Koeltz Botanical Books, Schmitten-Oberreifenberg: 1–942.

    Google Scholar 

  • Lengyel, E., J. Padisák & C. Stenger-Kovács, 2015. Establishment of equilibrium states and effect of disturbances on benthic diatom assemblages of the Torna-Stream, Hungary. Hydrobiologia 750: 43–56.

    Article  CAS  Google Scholar 

  • Li, S., D. L. Villeneuve, J. P. Berninger, B. R. Blackwell, J. E. Cavallin, M. N. Hughes & G. T. Ankley, 2017. An integrated approach for identifying priority contaminant in the Great Lakes Basin – investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern. Science of the Total Environment 579: 825–837.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C. X., 1987. The Zoological Record of Liaoning: Fish, Liaoning Science and Technology Press, Shenyang:

    Google Scholar 

  • Lukács, Á., I. Bácsi, Z. Nemes-Kókai, G. Borics, G. Várbíró, E. T-Krasznai & V. B-Béres, 2021. Strong influence of climatic extremes on diversity of benthic algae and cyanobacteria in a lowland intermittent stream. Ecohydrology 14: e2286.

    Article  Google Scholar 

  • Manolaki, P., M. B. Mouridsen, E. Nielsen, A. Olesen, S. M. Jensen, T. L. Lauridsen & T. Riis, 2020. A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms. Journal of Environmental Management 274: 111181.

    Article  CAS  PubMed  Google Scholar 

  • Mayor, S. J., J. F. Cahill, F. He, P. Sólymos & S. Boutin, 2012. Regional boreal biodiversity peaks at intermediate human disturbance. Nature Communications 3: 1142.

    Article  CAS  PubMed  Google Scholar 

  • Mazzarino, M. & J. T. Finn, 2016. An NDVI analysis of vegetation trends in an Andean watershed. Wetlands Ecology and Management 24: 623–640.

    Article  Google Scholar 

  • Miller, M. P., J. G. Kennen, J. A. Mabe & S. V. Mize, 2012. Temporal trends in algae, benthic invertebrate, and fish assemblages in streams and rivers draining basins of varying land use in the south-central United States, 1993–2007. Hydrobiologia 684: 15–33.

    Article  Google Scholar 

  • Molino, J. F. & D. Sabatier, 2001. Tree diversity in tropical rain forest: a validation of the intermediate disturbance hypothesis. Science 294: 1702–1704.

    Article  CAS  PubMed  Google Scholar 

  • Padisak, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135–156.

    Article  Google Scholar 

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Article  Google Scholar 

  • Paidere, J., D. Gruberts, A. Škute & I. Druvietis, 2007. Impact of two different flood pulses on planktonic communities of the largest floodplain lakes of the Daugava River (Latvia). Hydrobiologia 592: 303–314.

    Article  Google Scholar 

  • Pereira, A., J. Trabulo, I. Fernandes, C. Pascoal, F. Cássio & S. Duarte, 2017. Spring stimulates leaf decomposition in moderately eutrophic streams. Aquatic Sciences 79: 197–207.

    Article  Google Scholar 

  • Petchey, O., P. J. Morin, F. D. Hulot, M. Loreau, J. McGrady-Steed & S. Naeem, 2002. Contributions of aquatic model systems to our understanding of biodiversity and ecosystem functioning. In Loreau, M., S. Naeem & P. Inchausti (eds), Biodiversity and Ecosystem Functioning. Synthesis and Perspectives Oxford University Press, Oxford: 127–138.

    Google Scholar 

  • Prescott, G. W., R. Patrick & C. W. Reimer, 1975. The diatoms of the United States. Academy of Natural Science and Philosophy Monograph 13: 582.

    Google Scholar 

  • Qu, X., W. Peng, Y. Liu, M. Zhang, Z. Ren, N. Wu & X. Liu, 2019. Networks and ordination analyses reveal the stream community structures of fish, macroinvertebrate and benthic algae, and their responses to nutrient enrichment. Ecological Indicators 101: 501–511.

    Article  CAS  Google Scholar 

  • Sala, O. E., F. I. I. I. Stuart Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    Article  CAS  PubMed  Google Scholar 

  • Santos, L. N., A. Franco, J. Souza, I. C. Miyahira & R. Neves, 2021. Using richness of native and non-native aquatic species along a climatic gradient to test the intermediate disturbance hypothesis. Hydrobiologia 848: 2055–2075.

    Article  Google Scholar 

  • Schwilk, D. W., J. E. Keeley & W. J. Bond, 1997. The intermediate disturbance hypothesis does not explain fire and diversity pattern in fynbos. Plant Ecology 132: 77–84.

    Article  Google Scholar 

  • Soininen, J., R. Paavola & T. Muotka, 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27: 330–342.

    Article  Google Scholar 

  • Tang, S., T. Zhang, J. Lu, D. Li, J. Pan & C. Duan, 2015. Temporal and spatial variation in fish assemblages in Lake Taihu, China. Journal of Freshwater Ecology 30: 181–196.

    Article  CAS  Google Scholar 

  • Thorp, J. H. & A. P. Covich (eds), 2009. Ecology and Classification of North American Freshwater Invertebrates. Academic, New York.

    Google Scholar 

  • Townsend, R. C., 1996. Concepts in river ecology: pattern and process in the catchment hierarchy. River Systems 10: 3–21.

    Article  Google Scholar 

  • Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography 42: 938–949.

    Article  Google Scholar 

  • Weithoff, G., N. Walz & U. Gaedke, 2001. The intermediate disturbance hypothesis-species diversity or functional diversity? Journal of Plankton Research 23: 1147–1155.

    Article  Google Scholar 

  • WWF, 2020. In Almond, R. E. A., M. Grooten & T. Petersen (eds), Living Planet Report 2020: Bending the Curve of Biodiversity Loss. WWF, Gland.

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the editors and reviewers for valuable comments. We also thank H. Yang for technical assistance.

Funding

This study was supported by the National Natural Science Foundation of China (41977193) and the National Science and Technology Basic Resources Survey Program of China (2019FY101704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuwang Yin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This work does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: Judit Padisák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Yin, X. Intermediate disturbance hypothesis explains eutrophication and biodiversity pattern in a boreal river basin, China. Hydrobiologia 849, 3389–3399 (2022). https://doi.org/10.1007/s10750-022-04940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04940-7

Keywords

Navigation