Skip to main content
Log in

Dry phase duration and periodicity alter clitellate communities in central European intermittent streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Small streams in the temperate continental region of central Europe have been recently exposed to frequent drying. We investigated the effects of drying on clitellate communities in 25 small streams evenly distributed along the gradient of flow intermittence. We observed that the community exposed to both irregular and periodic drying could maintain local species diversity. However, significant differences in clitellate species composition were observed between perennial, irregularly drying, and intermittent streams. The effect of drying was even stronger in intermittent streams, where significantly lower beta diversity was observed compared to perennial streams. The most important changes in clitellate composition were controlled by water temperature and geographical variables in perennial streams, while streams affected by drying were controlled by climate, with high mean July air temperature and low annual precipitation sums amplifying the effect. The abundance of semiaquatic species was also affected by the periodicity of the dry phase, with their proportion predicted in the regression tree analysis to be 11% in perennial and irregularly drying streams, and 40% in periodically drying streams. The observed changes in clitellate community structure suggest a gradual adaptation to increasing drying severity, in which sensitive species (e.g., rheobionts) may be replaced by desiccation-tolerant and semiaquatic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Aspin, T. W. H., K. Khamis, T. J. Matthews, A. M. Milner, M. J. O’Callaghan, M. Trimmer, G. Woodward & M. E. Ledger, 2018. Extreme drought pushes invertebrate communities over functional thresholds. Global Change Biology 25: 230–244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bêche, L. A. & V. H. Resh, 2007. Biological traits of benthic macroinvertebrates in California Mediterranean-climate streams: long-term annual variability and trait diversity patterns. Fundamental and Applied Limnology 169: 1–23.

    Article  Google Scholar 

  • Bêche, L. A., P. G. Connors, V. H. Resh & A. M. Merenlender, 2009. Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32: 778–788.

    Article  Google Scholar 

  • Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.

    Article  Google Scholar 

  • Breiman, L., J. Friedman, R. Olshen & C. Stone, 1984. Classification and Regression Trees, Wadsworth International Group, Belmont.

    Google Scholar 

  • Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic Oligochaeta of the World, Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Calapez, A. R., C. L. Elias, S. F. P. Almeida & M. J. Feio, 2014. Extreme drought effects and recovery patterns in the benthic communities of temperate streams. Limnetica 33: 281–296.

    Google Scholar 

  • Carl, P. & B. G. Peterson, 2010. PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis. R Package Version 1.0.2.1.

  • Crabot, J., M. Polášek, B. Launay, P. Pařil & T. Datry, 2021. Drying in newly intermittent rivers leads to higher variability of invertebrate communities. Freshwater Biology 66: 730–744.

    Article  Google Scholar 

  • Culek, M., 2013. Biogeographical provinces, subprovinces and bioregions of the Czech Republic. Journal of Landscape Ecology 6: 5–16.

    Article  Google Scholar 

  • Datry, T., S. T. Larned & M. R. Scarsbrook, 2007. Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface–subsurface exchange. Freshwater Biology 52: 1452–1462.

    Article  Google Scholar 

  • Datry, T., M. Lafont & S. T. Larned, 2010. Hyporheic annelid distribution along a flow permanence gradient in an alluvial river. Aquatic Sciences 72: 335–346.

    Article  Google Scholar 

  • Datry, T., R. Corti & M. Philippe, 2012. Spatial and temporal aquatic–terrestrial transitions in the temporary Albarine River, France: responses of invertebrates to experimental rewetting. Freshwater Biology 57: 716–727.

    Article  Google Scholar 

  • Datry, T., S. T. Larned, K. M. Fritz, M. T. Bogan, P. J. Wood, E. I. Meyer & A. N. Santos, 2014. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence. Ecography 37: 94–104.

    Article  Google Scholar 

  • Dumnicka, E. & J. Koszałka, 2005. The effect of drought on Oligochaeta communities in small woodland streams. Biologia, Bratislava 60: 143–150.

    Google Scholar 

  • Durance, I. & S. J. Ormerod, 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942–957.

    Article  Google Scholar 

  • Erséus, C., R. Grimm, B. Healy, S. Lundberg, E. Rota & T. Timm, 1999. Clitellate diversity in Nationalstadsparken, an urban national park in Stockholm, Sweden. Hydrobiologia 406: 101–110.

    Article  Google Scholar 

  • ESRI, 2003. ArcGIS 8.3, Environmental Systems Research Institute, Redlands.

    Google Scholar 

  • Gallardo, B., S. Dolédec, A. Paillex, D. B. Arscott, F. Sheldon, F. Zilli, S. Mérigoux, E. Castella & F. A. Comín, 2014. Response of benthic macroinvertebrates to gradients in hydrological connectivity: a comparison of temperate, subtropical, Mediterranean and semiarid river floodplains. Freshwater Biology 59: 630–648.

    Article  Google Scholar 

  • Graefe, U. & R. M. Schmelz, 1999. Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. In Schmelz RM, Sühlo K, editors, Proceedings of the 3rd International Symposium on Enchytraeidae, Osnabrück, Germany: 3–4 July 1998, Universitätsverlag Rasch, Osnabrück (Newsletter on Enchytraeidae 6): 59–67.

  • Hastie, T. & R. Tibshirani, 1990. Exploring the nature of covariate effects in the proportional hazards model. Biometrics 46: 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  • Herbst, D. B., S. D. Cooper, R. B. Medhurst, S. W. Wiseman & C. T. Hunsaker, 2019. Drought ecohydrology alters the structure and function of benthic invertebrate communities in mountain streams. Freshwater Biology 64: 886–902.

    Article  Google Scholar 

  • Hill, M. J., K. L. Mathers, S. Little, T. Worrall, J. Gun & P. J. Wood, 2019. Ecological effects of a supra-seasonal drought on macroinvertebrate communities differ between near-perennial and ephemeral river. Aquatic Sciences 81: 62.

    Article  Google Scholar 

  • Hrabě, S., 1981. Vodní máloštětinatci (Oligochaeta) Československa. Acta Universitatis Carolinae Biologia 1979: 1–168.

    Google Scholar 

  • Ionita, M., L. Tallaksen, D. Kingston, J. Stagge, G. Laaha, H. Van Lanen, P. Scholz, S. M. Chelcea & K. Haslinger, 2017. The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences 21: 1397–1419.

    Article  Google Scholar 

  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • Janovská, V., P. Šímová, J. Vlasák & P. Sklenička, 2017. Factors affecting farm size on the European and national level of the Czech Republic. Agricultural Economics 63: 1–12.

    Google Scholar 

  • Juget, J. & M. Lafont, 1994. Theoretical habitat templets, species traits, and species richness: aquatic oligochaetes in the Upper Rhône River and its floodplain. Freshwater Biology 31: 327–340.

    Article  Google Scholar 

  • Kokeš, J., S. Zahrádková, D. Němejcová, J. Hodovský, J. Jarkovský & T. Soldán, 2006. The PERLA system in the Czech Republic: a multivariate approach for assessing the ecological status of running waters. Hydrobiologia 566: 343–354.

    Article  Google Scholar 

  • Košel, V., 2001. Hirudinológia pre hydrobiológov v praxi. In Makovinská, J. & L. Tóthová (eds), Zborník z hydrobiologického kurzu 2001. Rajecké Teplice: 37–54.

  • Lafont, M. & F. Malard, 2001. Oligochaete communities in the hyporheic zone of a glacial river, the Roseg River, Switzerland. Hydrobiologia 463: 75–81.

    Article  Google Scholar 

  • Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology. Freshwater Biology 55: 717–738.

    Article  Google Scholar 

  • Learner, M. A., G. Lochhead & B. D. Hughes, 1978. A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshwater Biology 8: 357–375.

    Article  Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24.

    Article  Google Scholar 

  • Leigh, C., A. J. Boulton, J. L. Courtwright, K. Fritz, C. L. May, R. H. Walker & T. Datry, 2016. Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology 61: 1181–1199.

    Article  Google Scholar 

  • Loskotová, B., M. Straka, M. Polášek, A. Dostálová & P. Pařil, 2021. Macroinvertebrate seedbank survival in pristine and nutrient-enriched intermittent streams and its contribution to flow phase communities. Hydrobiologia 848: 1911–1923.

    Article  Google Scholar 

  • Maraldo, K. & M. Holmstrup, 2009. Recovery of enchytraeid populations after severe drought events. Applied Soil Ecology 42: 227–235.

    Article  Google Scholar 

  • Milbrink, G. & T. Timm, 2001. Distribution and dispersal capacity of the Ponto-Caspian tubificid oligochaete Potamothrix moldaviensis Vejdovský et Mrázek, 1903 in the Baltic Sea region. Hydrobiologia 406: 93–102.

    Article  Google Scholar 

  • Miliša, M., R. Stubbington, T. Datry, N. Cid, N. Bonada, M. Šumanović & D. Milošević, 2022. Taxon-specific sensitivities to flow intermittence reveal macroinvertebrates as potential bioindicators of intermittent rivers and streams. Science of the Total Environment 804: 150022.

    Article  PubMed  CAS  Google Scholar 

  • Montalto, L. & M. Marchese, 2005. Cyst formation in Tubificidae (Naidinae) and Opistocystidae (Annelida, Oligochaeta) as an adaptive strategy for drought tolerance in fluvial wetlands of the Paraná River, Argentina. Wetlands 25: 488–494.

    Article  Google Scholar 

  • Neubert, E. & H. Nesemann, 1999. Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea, Spektrum Akademischer Verlag, Berlin.

    Google Scholar 

  • Nijboer, R. C., M. J. Wetzel & P. F. M. Verdonschot, 2004. Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520: 127–141.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, E. Szoecs & H. Wagner, 2017. Vegan: Community Ecology Package. 2013. R-package Version 2.4–2. http://CRAN.R-project.org/package=vegan.

  • Pařil, P., M. Polášek, B. Loskotová, M. Straka, J. Crabot & T. Datry, 2019. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshwater Biology 64: 1971–1983.

    Article  Google Scholar 

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen Geiger climate classification. Hydrology and Earth System Sciences Discussions 4: 439–473.

    Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variance partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Pižl, V., 2002. Žížaly České republiky. Earthworms of the Czech Republic, Sborník přírodovědeckého klubu v Uherském Hradišti, Supp: 9.

  • R Development Core Team, 2019. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Robson, B. J., E. T. B. Chester & C. M. C. Austin, 2011. Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Marine and Freshwater Research 62: 801–810.

    Article  CAS  Google Scholar 

  • Rodriguez, P. & T. B. Reynoldson, 2011. The Pollution Biology of Aquatic Oligochaetes, Springer, New York.

    Book  Google Scholar 

  • Sarremejane, R., N. Cid, R. Stubbington, T. Datry, M. Alp, M. Cañedo-Argüelles, A. Cordero-Rivera, Z. Csabai, C. Gutiérrez-Cánovas, J. Heino, M. Forcellini, A. Millán, A. Paillex, P. Pařil, M. Polášek, J. M. Tierno de Figueroa, P. Usseglio-Polatera, C. Zamora-Muñoz & N. Bonada, 2020. DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Scientific Data 7: 1–9.

    Article  Google Scholar 

  • Sarremejane, R., M. L. Messager & T. Datry, 2021a. Drought in intermittent river and ephemeral stream networks. Ecohydrology. https://doi.org/10.1002/eco.2390.

    Article  Google Scholar 

  • Sarremejane, R., R. Stubbington, J. England, C. E. M. Sefton, M. Eastman, S. Parry & A. Ruhi, 2021b. Drought effects on invertebrate metapopulation dynamics and quasi-extinction risk in an intermittent river network. Global Change Biology 27: 4024–4039.

    Article  PubMed  Google Scholar 

  • Schenková, J., P. Pařil, K. Petřivalská & J. Bojková, 2010. Aquatic oligochaetes (Annelida: Clitellata) of the Czech Republic: check-list, new records, and ecological remarks. Zootaxa 2676: 29–44.

    Article  Google Scholar 

  • Schmelz, R. M. & R. Collado, 2010. A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82: 1–176.

    Google Scholar 

  • Schwank, P., 1981. Turbellarien, Oligochaeten und Archianneliden des Breitenbachs und anderer oberhessischer Mittelgebirgsbäche. II. Die Systematik und Autökologie der einzelnen Arten. Schlitzer Produktionsbiologische Studien (43–2). Archiv Für Hydrobiologie, Supplement 62: 86–147.

    Google Scholar 

  • Spinoni, J., J. V. Vogt, G. Naumann, P. Barbosa & A. Dosio, 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology 38: 1718–1736.

    Article  Google Scholar 

  • Straka, M., M. Polášek, V. Syrovátka, R. Stubbington, S. Zahrádková, D. Němejcová, L. Šikulová, P. Řezníčková, L. Opatřilová, T. Datry & P. Pařil, 2019. Recognition of stream drying based on benthic macroinvertebrates: a new tool in Central Europe. Ecological Indicators 106: 105486.

    Article  Google Scholar 

  • Straka, M., M. Polášek, Z. Csabai, O. Zweidick, W. Graf, E. I. Meyer, E. Mišíková Elexová, M. Lešťáková & P. Pařil, 2021. Stream drying bioindication in Central Europe: a biodrought Index accuracy assessment. Ecological Indicators 130: 108045.

    Article  Google Scholar 

  • Stubbington, R. & T. Datry, 2013. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshwater Biology 58: 1202–1220.

    Article  Google Scholar 

  • Stubbington, R., A. M. Greenwood, P. J. Wood, P. D. Armitage, J. Gunn & A. L. Robertson, 2009. The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. Hydrobiologia 630: 299–312.

    Article  Google Scholar 

  • Terhivuo, J. & A. Saura, 2006. Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biological Invasions 8: 1205–1218.

    Article  Google Scholar 

  • Therneau, T., B. Atkinson & B. Ripley, 2012. Rpart: Recursive Partitioning. R Package Version 4.1–15. https://cran.r-project.org/package=rpart

  • Timm, T., 2009. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia 66: 1–235.

    Google Scholar 

  • Tolasz, R., 2007. Climate Atlas of Czechia. Český hydrometeorologický ústav Olomouc, Univerzita Palackého v Olomouci, Olomouc.

    Google Scholar 

  • Valls, L., A. Castillo-Escrivà, F. Mesquita-Joanes & X. Armengol, 2016. Human-mediated dispersal of aquatic invertebrates with waterproof footwear. Ambio 45: 99–109.

    Article  PubMed  Google Scholar 

  • Vautard, R., P. Yiou, F. D’Andrea, N. de Noblet, N. Viovy, C. Cassou, J. Polcher, P. Ciais, M. Kageyama & Y. Fan, 2007. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophysical Research Letters 34: 1–5.

    Article  Google Scholar 

  • Verdonschot, P. F. M., 2006. Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564: 127–142.

    Article  Google Scholar 

  • Vicente-Gonzalez, L. & J. L. Vicente-Villardon, 2021. PERMANOVA, Multivariate Analysis of Variance Based on Distances and Permutations, R package version 0.2.0. https://cran.r-project.org/package=PERMANOVA

  • Zahrádková, S., O. Hájek, P. Treml, P. Pařil, M. Straka, D. Němejcová, M. Polášek & P. Ondráček, 2015. Hodnocení rizika vysychání drobných vodních toků v České republice. Vodohospodářské Technicko-Ekonomické Informace 6: 4–16.

    Article  Google Scholar 

  • Zahradníček, P., R. Brázdil, P. Štěpánek & J. Trnka, 2021. Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961–2019. International Journal of Climatology 41: 1211–1229.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ondřej Hájek for map preparation and Veronika Horsáková for language revision. Comments from two reviewers have considerably improved the quality of the manuscript. The study was supported by the Czech Science Foundation (P505/20-17305S).

Funding

The study was supported by the Czech Science Foundation (P505/20-17305S).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Funding acquisition; Review & Editing: MH; Writing original draft, Formal analysis, Visualization: JS, Data curation; Review & Editing: MP; Funding acquisition; Data curation; Validation; Methodology; Review & Editing: PP.

Corresponding author

Correspondence to Jana Schenková.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenková, J., Horsák, M., Polášek, M. et al. Dry phase duration and periodicity alter clitellate communities in central European intermittent streams. Hydrobiologia 849, 3245–3258 (2022). https://doi.org/10.1007/s10750-022-04933-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04933-6

Keywords

Navigation