Skip to main content
Log in

Phormidium sp. allelochemicals induce the collapse of large populations of different genotypes of Microcystis aeruginosa

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the present study, we aimed to demonstrate that allelopathic compounds from the cyanobacterium Phormidium sp. can induce the collapse of large populations of the cyanobacteria Microcystis aeruginosa Kützing Kützing. We employed several strains of this toxic cyanobacteria, from six different locations, in order to test for adaptive variation in resistance to allelochemicals. As a preliminary test to detect allelopathic effect, we performed bioassays with Phormidium allelochemicals against the different strains of M. aeruginosa at low population abundances. Then, we combined long-term competition experiments and mechanistic modelling with two purposes: (a) demonstrate that the inhibitory effect of Phormidium sp. against M. aeruginosa was due to allelopathy and not resource competition; (b) test the effectiveness of these allelochemicals at inducing the collapse of large populations of M. aeruginosa. Our results showed a strong allelopathic effect of Phormidium, which induced the collapse of large populations of M. aeruginosa, without evidence of differences in sensitivity between strains. We demonstrated that allelopathy (interference competition) can reverse the outcome predicted by resource competition (exploitation competition). These results are encouraging in order to take further steps in the development of a bioremediation method, based in Phormidium allelopathy, against blooms of toxic cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4  
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Anderson, D. M., P. M. Glibert & J. M. Burkholder, 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition and consequences. Estuaries 25(4b): 704–726.

    Article  Google Scholar 

  • Antunes, J., S. Pereira, T. Ribeiro, J. E. Plowman, A. Thomas, S. Clerens, A. Campos, V. Vasconcelos & J. R. Almeida, 2019. A multi-bioassay integrated approach to assess the antifouling potential of the cyanobacterial metabolites portoamides. Marine Drugs 17(2): 1–19.

    Article  Google Scholar 

  • Barreiro, A. & V. M. Vasconcelos, 2014. Interactions between allelopathic properties and growth kynetics in four freshwater phytoplankton species studied by model simulations. Aquatic Ecology 48: 191–205.

    Article  CAS  Google Scholar 

  • Barreiro, A., S. Roy & V. M. Vasconcelos, 2018. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos 127(1): 85–98.

    Article  Google Scholar 

  • Barreiro et al., 2022 . Bottom-up regulation of allelopathy and population dynamics of an experimental two-species community. 

  • Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. P. Hamilton & J. D. Brookes, 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46(5): 1394–1407.

    Article  CAS  Google Scholar 

  • Chao, L. & B. R. Levin, 1981. Structured habitats and the evolution of anticompetitor toxins in bacteria. Proceedings of the National Academy of Sciences USA 78: 6324–6328.

    Article  CAS  Google Scholar 

  • Chen, J., H. Zhang, Z. Han, J. Ye & Z. Liu, 2012. The influence of aquatic macrophytes of Microcystis aeruginosa growth. Ecological Engenereeing 42: 130–133.

    Article  Google Scholar 

  • Cobo, F., 2015. Métodos de control de las floraciones de cianobacterias en aguas continentales. Limnetica 34(1): 247–268.

    Google Scholar 

  • Durret, R. & S. Levin, 1997. Allelopathy in spatially distributed populations. Journal of Theoretical Biology 185: 165–171.

    Article  Google Scholar 

  • Ellner, S. P., Y. Seifu & R. H. Smith, 2002. Fitting Population Dynamic Models to Time-Series Data by Gradient Matching. Ecology 83(8): 2256–2270.

    Article  Google Scholar 

  • Flores, E., J. E. Frías, L. M. Rubio & H. Antonia, 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosynthesis Research 83: 117–133.

    Article  CAS  Google Scholar 

  • Gross, E., H. Meyer & G. Schilling, 1996. Release and Ecological Impact of Algicidal Hydrolysable Polyphenols in Myriophyllum Spicatum. Phytochemistry 41: 133–138.

    Article  CAS  Google Scholar 

  • Huisman, J., J. Sharples, J. Stroom, P. Visser, W. A. Kardinaal, J. M. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85(11): 2960–2970.

    Article  Google Scholar 

  • Jørgensen, S., W. Löffler, & M. Straškraba, 2005. Lake and Reservoir Management. Vol. 54. Developments in Water Science. Elsevier, Amsterdam.

  • Kolmakov, V., 2006. Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend Elenk. In Aquatic Systems. Microbiology 75(2): 115–118.

    Article  CAS  Google Scholar 

  • Leão, P.N., A. R. Pereira, W. T. Liu, J. Ng, P. A. Pevzner, P. C. Dorrestein, G. M. König, V. M. Vasconcelos, W. H. Gerwick, 2010. Synergistic allelochemicals from a freshwater cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America 107(25): 11183–11188. https://doi.org/10.1073/pnas.0914343107

  • Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2(2): 164–168.

    Article  Google Scholar 

  • Li, J., R. Li & J. Li, 2017. Current research scenario for microcystins biodegradation – A review on fundamental knowlenge, application prospects and challenges. Science of the Total Environment 595: 615–632.

    Article  CAS  Google Scholar 

  • Matthijs, H.C.P., P. M. Visser, B. Reeze, J. Meeuse, P.C. Slot, G. Wijn, R. Talens, J. Huisman, 2012. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research 46(5): 1460–1472. https://doi.org/10.1016/j.watres.2011.11.016

  • Ma, J., J. D. Brookes, B. Qin, H. W. Paerl, G. Gao, P. Wu, W. Zhang, J. Deng, G. Zhu, Y. Zhang, H. Xu & H. Niu, 2014. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. In Lake Taihu. China. Harmful Algae 31: 136–142.

    Article  CAS  Google Scholar 

  • Manson, C., 2002. Biology of Freshwater Pollution, Vol. 4. Pearson Education, England.

    Google Scholar 

  • Monteiro, N., J. Cuaresma, V. Vasconcelos & A. Barreiro, 2021. Competitive exclusion of toxic cyanobacterial species by an allelopathic strain of Phormidium. Aquatic Ecology. https://doi.org/10.1007/s10452-021-09901-1.

    Article  Google Scholar 

  • Nakai, S., Y. Inoue, M. Hosomi & A. Murakami, 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research 34(11): 3026–3032.

    Article  CAS  Google Scholar 

  • Nelder, J. A. & R. Mead, 1965. A simplex method for function minimization. The Computer Journal 7: 308–313.

    Article  Google Scholar 

  • Paerl, H., et al., 2016. It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environmental Science and Technology 50(20): 10805–10813.

    Article  CAS  Google Scholar 

  • Qin, B., et al., 2007. Environmental issues of Lake Taihu, China. Hydrobiologia 581: 3–14.

    Article  CAS  Google Scholar 

  • Redfield, A. C, 1934. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton. James Johnstone Memorial Volume, University Press of Liverpool 176–192.

  • Ribeiro, T., F. Lemos, M. Preto, J. Azevedo, M. L. Sousa, P. N. Leao, A. Campos, S. Linder, R. Vitorino, V. Vasconcelos & R. Urbatzka, 2017. Cytotoxicity of portoamides in human cancer cells and analysis of the molecular mechanisms of action. PLoS ONE 12(12): e0188817.

    Article  Google Scholar 

  • Roy, S., 2009. The coevolution of two phytoplankton species on a single resource. Allelopathy as a pseudo-mixotrophy. Theoretical Population Biology 75: 68–75.

    Article  Google Scholar 

  • R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Sigee, D., R. Glenn, M. Andrews, E. Bellinger, R. Butler, H. Epton & R. Hendry, 1999. Biological Control of Cyanobacteria: Principles and Possibilities. Hydrobiologia 396: 161–172.

    Article  Google Scholar 

  • Sondergaard, M., K. Wolter & W. Ripl, 2002. Chemical Treatment of Water and Sediments with Special Reference to Lakes. Handwbook of Ecological Reforestation 1: 185–205.

    Google Scholar 

  • Sousa, M. L., T. Ribeiro, V. Vasconcelos, S. Linder & R. Urbatzka, 2020. Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon 175: 49–56.

    Article  CAS  Google Scholar 

  • Steffen, M. M., et al., 2017. Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014: Linkages between Biology and the Water Supply Shutdown of Toledo, OH. Environmental Science and Technology 51(12): 6745–6755.

    Article  CAS  Google Scholar 

  • Tan, X., H. Gu, Y. Ruan, J. Zhong, K. Parajuli & J. Hu, 2019. Effects of nitrogen on interspecific competition between two cell-size cyanobacteria: Microcystis aeruginosa and Synechococcus sp. Harmful Algae 89: 101661.

    Article  CAS  Google Scholar 

  • Tilman, D., 1977. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58(2): 338–348.

    Article  CAS  Google Scholar 

  • Visser, P., B. Ibelings, M. Bormans & J. Huisman, 2016. Artificial mixing to control cyanobacterial blooms: a review. Aquatic Ecology 50(3): 423–441.

    Article  CAS  Google Scholar 

  • Wang, Z., D. Li, H. Qin & Y. Li, 2012. An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes. Environmental Pollution 160: 34–41.

    Article  CAS  Google Scholar 

  • Wang, B., Q. Song, J. Long, G. Song, W. Mi & Y. Bi, 2019. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulate effects on growth of chlorophytes. Chemosphere 228: 505–512.

    Google Scholar 

  • Wolter, K, 1994. “Phosphorus Precipitation” in Restoration of Lake Ecosystem – A Holistic Approach, ed M. Eiseltova (Wetlands International-european Association), 63–68.

Download references

Acknowledgements

We are very thankful to M. Vale, J. Morais, R. Silva, J. Azevedo and P. Reis for their valuable technical support. This work was funded by NOVELMAR Project—Novel marine products with biotechnological applications (Grant No. NORTE-01-0145-FEDER-000035) for supporting this work, funded by FCT (Foundation for Science and Technology, Portugal). ABF was also funded by contract from FCT. We are also very thankful to two anonymous reviewers whose comments and suggestions greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AVP and MAP—performed research, data analysis and wrote the manuscript. ABF—designed research, performed data analysis and wrote the manuscript, VV—designed research and wrote the manuscript.

Corresponding author

Correspondence to Aldo Barreiro Felpeto.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Luigi Naselli-Flores

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pando, Á.V., Pires, M.A., Vasconcelos, V. et al. Phormidium sp. allelochemicals induce the collapse of large populations of different genotypes of Microcystis aeruginosa. Hydrobiologia 849, 3213–3226 (2022). https://doi.org/10.1007/s10750-022-04926-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04926-5

Keywords

Navigation