Skip to main content
Log in

Environmental heterogeneity increases dissimilarity in zooplankton functional traits along a large Neotropical river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Beta diversity is the variability in species composition among sampling units for a given area and can be influenced by several environmental drivers, including environmental heterogeneity. Here, we considered the contribution of seven tributaries flowing into the Upper Paraná River channel as the mains drivers of environmental heterogeneity and zooplankton beta diversity. We used Mantel test to examine the relationships between zooplankton functional beta diversity components (total, turnover, and nestedness) and environmental and geographical distance. Generalized dissimilarity modeling (GDM) was run to test which environmental variables were the best predictors of beta diversity components. Mantel’s test results revealed that total beta diversity was positively related with environmental heterogeneity in almost all periods. GDM analysis results showed that total beta and turnover were related to temperature, organic suspended matter, dissolved oxygen, NH4, and pH, while nestedness was influenced by depth and geographic distances. Our results support the idea that smaller rivers are a main source of diversity for large rivers, especially the ones with cascading reservoirs. Overall, our study shoes that variation in limnological variables results in higher dissimilarity in zooplankton communities and that environmental change filters and sorts species according to their functional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Code availability

Not applicable.

References

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology and Hydrobiology 4: 255–256.

    Google Scholar 

  • Alahuhta, J., S. Kosten, M. Akasaka, et al., 2017. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography 44: 1758–1769.

    Article  Google Scholar 

  • Allan, J. D., 1976. The University of Chicago Life History Patterns in Zooplankton. The University of Chicago Press for the American Society of Naturalists 110: 165–180.

    Google Scholar 

  • Andersen, T. & D. O. Hessen, 1991. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.

    Article  CAS  Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. Mcardle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  PubMed  Google Scholar 

  • Astorga, A., R. Death, F. Death, R. Paavola, M. Chakraborty & T. Muotka, 2014. Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecology and Evolution 4: 2693–2702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baeten, L., P. Vagansbeke, M. Hermy, G. Petrken, K. Vanhuyse & K. Verheyen, 2012. Distinguishing between turnover and nestedness in the quantification of biotic homogenization. Biodiversity and Conservation 21: 1399–1409.

    Article  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: Towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Barton, P. S., S. A. Cunningham, A. D. Manning, H. Gigg, D. B. Lindenmayer & R. K. Didham, 2013. The spatial scaling of beta diversity. Global Ecology and Biogeography 22: 639–647.

    Article  Google Scholar 

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A. & C. D. L. Orme, 2012. Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808–812.

    Article  Google Scholar 

  • Bender, M. G., F. Leprieur, D. Mouillot, M. Kulbicki, V. Parravicini, M. R. Pie, D. R. Barneche, L. G. R. Oliveira-Santos & S. R. Floeter, 2016. Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography 40: 425–435.

    Article  Google Scholar 

  • Bini, L. M., V. L. Landeiro, A. A. Padial, T. Siqueira & J. Heino, 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95: 1569–1578.

    Article  PubMed  Google Scholar 

  • Bomfim, F. F., T. Mantovano, D. C. Amaral, W. S. Palhiarini, C. C. Bonecker & F. A. Lansac-Tôha, 2017. Adjacent environments contribute to the increase of zooplankton species in a neotropical river. Acta Limnologica Brasiliensia (online) 29: 1–103.

    Google Scholar 

  • Bomfim, F. F., F. M. Lansac-Tôha, C. C. Bonecker & F. A. Lansac-Tôha, 2021. Determinants of zooplankton functional dissimilarity during years of El Niño and La Niña in floodplain shallow lakes. Aquatic Sciences 83: 41.

    Article  CAS  Google Scholar 

  • Bonecker, C. C., F. A. Lansac-Tôha & D. C. Rossa, 1998. Planktonic and non-planktonic rotifers in two environments of the Upper Parana River floodplain, State of Mate Grosso do Sul, Brazil. Brazilian Archives of Biology and Technology 41: 447–456.

    Article  Google Scholar 

  • Bonecker, C. C., L. P. Diniz, L. S. M. Braghin, T. Mantovano, J. V. F. Silva, F. F. Bomfim, D. A. Moi, S. Deosti, G. N. T. Santos, D. A. Candeias, A. J. M. M. Mota, L. F. M. Velho & F. A. Lansac-Tôha, 2020. Synergistic effects of natural and anthropogenic impacts on zooplankton diversity in a subtropical floodplain: a long-term study. Oecologia Australis 24: 524–537.

    Article  Google Scholar 

  • Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753: 233–241.

    Article  CAS  Google Scholar 

  • Braghin, L. S. M., B. A. Almeida, D. C. Amaral, T. F. Canella, B. C. G. Garcia & C. C. Bonecker, 2018. Effects of dams decrease zooplankton functional b-diversity in river-associated lakes. Freshwater Biology 63: 721–730.

    Article  Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Bruno, D., O. Belmar, A. Maire, A. Morel, B. Dumont & T. Datry, 2019. Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Global Change Biology 25: 1612–1628.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coccia, C., B. A. Almeida, A. J. Green, A. B. Gutiérrez & J. A. Carbonell, 2021. Functional diversity of macroinvertebrates as a tool to evaluate wetland restoration. Journal of Applied Ecology 58: 2999.

    Article  Google Scholar 

  • Dias, J. D., C. C. Bonecker & M. R. Miracle, 2014. The rotifer community and its functional role in lakes of a neotropical floodplain. International Review of Hydrobiology 99: 72–83.

    Article  Google Scholar 

  • Diaz, S. & M. Cabido, 2001. Vive la difference: plant functional diversity matters to ecosystem processes: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16: 646–655.

    Article  Google Scholar 

  • Dodson, S. I. & J. L. Brooks, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  PubMed  Google Scholar 

  • Elmoor-Loureiro, L. M. A., 1997. Manual de identificação de cladóceros límnicos do. Brasil Universa, Brasília.

    Google Scholar 

  • Elmoor-Loureiro, L. M. A., 2010. Cladóceros do Brasil: Famílias Chydoridae e Eurycercidae. Disponível em: http://cladocera.wordpress.com. Acesso em 19 de setembro 2017.

  • Ewers, R. M., R. K. Didham, W. D. Pearse, V. Lefebvre, I. M. D. Rosa, J. M. B. Carreiras, R. M. Lucas & D. C. Reuman, 2013. Using landscape history to predict biodiversity patterns in fragmented landscapes. Ecology Letters 16(10): 1221–1233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrier, S., G. Manion, J. Elith & K. Richardson, 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13: 252–264.

    Article  Google Scholar 

  • Fitzpatrick, S., G. Bramley & S. Johnsen, 2013. Pathways into multiple exclusion homelessness in seven UK cities. Urban Studies 50(1): 148–168.

    Article  Google Scholar 

  • Gianuca, A. T., S. A. J. Declerck, P. Lemmens & L. De Meester, 2017. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity. Ecology 98(2): 525–533.

    Article  PubMed  Google Scholar 

  • Gower, J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Article  Google Scholar 

  • Hébert, M. P., B. E. Beisner & R. A. Maranger, 2016. Meta-analysis of zooplankton functional traits influencing ecosystem function. Ecology 97: 1069–1080.

    PubMed  Google Scholar 

  • Hébert, M. P., B. E. Beisner & R. Maranger, 2017. Linking zooplankton communities to ecosystem functioning: toward an effect-Trait framework. Journal of Plankton Research 39: 3–12.

    Article  CAS  Google Scholar 

  • Heino, J., 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology 56: 1703–1722.

    Article  Google Scholar 

  • Heino, J., P. Louhi & T. Muotka, 2004. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshwater Biology 49: 1230–1239.

    Article  Google Scholar 

  • Heino, J., M. Grönroos, J. Ilmonen, et al., 2013. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science 32: 142–154.

  • Heino, J., A. S. Melo & L. M. Bini, 2015. Reconceptualising the beta diversity–environmental heterogeneity relationship in running water systems. Freshwater Biology 60: 223–235.

    Article  Google Scholar 

  • Henriques-Silva, R., Z. Lindo & P. R. Peres-Neto, 2013. A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94: 627–639.

    Article  PubMed  Google Scholar 

  • Jackson, D. A. & K. M. Somers, 1989. Are probability estimates from the permutation model of Mantel’s test stable? Canadian Journal of Zoology 67(3): 766–769.

    Article  Google Scholar 

  • Koste, W., 1978. Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight. Monogononta, Vol. I: 673. Vol. II: 474. Gebrüder Borntraeger, Berlin.

  • Lansac-Tôha, F. A., L. F. M. Velho, J. Higuti & E. M. Takahashi, 2002. Cyclopidae (Crustacea, Copepoda) from the Upper Paraná River Floodplain, Brazil. Revista Brasileira de Biologia = Brazilian Journal of Biology 62: 125−133.

  • Lansac-Tôha, F. M., J. Heino, B. A. Quirino, G. A. Moresco, O. Peláez, B. R. Meira, L. C. Rodrigues, S. Jati, F. A. Lansac-Tôha & L. F. M. Velho, 2019. Differently dispersing organismo groups show contrasting beta diversity patterns in a dammed subtropical river basin. Science of the Total Environment 691: 1271–1281.

    Article  PubMed  CAS  Google Scholar 

  • Legendre, P., 2014. Replacement and richness difference components. Global Ecology and Biogeography 23: 1324–1334.

    Article  Google Scholar 

  • Legendre, P., M. J. Fortin & D. Borcard, 2015. Should the Mantel test be used in spatial analysis? Methods in Ecology and Evolution 6(11): 1239–1247.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet &, et al., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Litchman, E., M. D. Ohman & T. Kiørboe, 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research 35: 473–484.

    Article  Google Scholar 

  • Liu, J., M. Vellend, Z. Wang & M. Yu, 2018. High beta diversity among small islands is due to environmental heterogeneity rather than ecological drift. Journal of Biogeography 45(10): 2252–2261.

    Article  Google Scholar 

  • Lopes, P. M., L. M. Bini, S. A. J. Declerck, et al., 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 9(10): e109581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Delgado, E. O., K. O. Winemiller & F. A. Villa-Navarro, 2020. Local environmental factors influence beta-diversity patterns of tropical fish assemblages more than spatial factors. Ecology 101(2): e02940.

    Article  PubMed  Google Scholar 

  • Martínez, A., A. Larranaga, A. Basaguren, J. Petez, C. Mendoza-lera & J. Pozo, 2013. Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia 711: 31–42.

    Article  Google Scholar 

  • Matsumura-Tundisi, T., 1986. Latitudinal distribution of Calanoida copepods in freshwater aquatic systems of Brazil. Revista Brasileira de Biologia = Brazilian Journal of Biology 46: 527−553.

  • Matthews, T. J., C. Sheard, H. E. W. Cottee-Jones, T. P. Bregman, J. A. Tobias & R. J. Whittaker, 2015. Ecological traits reveal functional nestedness of bird communities in habitat islands: a global survey. Oikos 124: 817–826.

    Article  Google Scholar 

  • Melão, M., 1999. Desenvolvimento e aspectos reprodutivos de Cladóceros e Copépodos de águas continentais brasileiras. In: Pompêo M. (Ed.) Perspectivas da Limnologia no Brasil. Gráfica e Editora União, São Luís: 45−57.

  • Mouchet, M. A., S. Villéger, N. W. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.

    Article  Google Scholar 

  • Nogueira, I. S., J. C. Nabout, M. S. R. Ibanez & L. M. Bourgoin, 2010. Determinants of beta diversity: the relative importance of environmental and spatial processes in structuring phytoplankton communities in an Amazonian floodplain. Acta Limnologica Brasiliensia 22: 247–256.

    Article  Google Scholar 

  • Paggi, S. J., 1978. Introduccion al estúdio de lós rotíferos. Revista De La Asociación Ciencias Naturales Del Litoral 9: 19–49.

    Google Scholar 

  • Perbiche-Neves, G., G. A. Boxshall, D. Previattelli, M. G. Nogueira & C. E. F. Rocha, 2015. Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of “de la Plata” River Basin (South America). ZooKeys 111: 1–111.

    Article  Google Scholar 

  • Peres-Neto, P. R. & D. A. Jackson, 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129(2): 169–178.

    Article  PubMed  Google Scholar 

  • Petri, S. & V. J. Fulfaro, 1983. Geologia da Chapada dos Parecis, Mato Grosso, Brasil. Revista Brasileira De Geociências 7: 274–282.

    Google Scholar 

  • R Core Team, 2021. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reid, J. W., 1985. Chave de identificação e lista de referências bibliograficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim De Zoologia 9: 17–143.

    Article  Google Scholar 

  • Roberto, M. C., N. N. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    Article  CAS  Google Scholar 

  • Segers, H., 1995. Rotifera: the Lecanidae (Monogonta). Guides to the identification of the micro invertebrates of the continental water of the world, Vol. 6. SPB Academic, The Hague: 226.

  • Siqueira, T., L. M. Bini, M. C. Cianciaruso, F. O. Roque & S. Trivinho-Strixino, 2009. The role of niche measures in explaining the abundance–distribution relationship in tropical lotic chironomids. Hydrobiologia 636: 163–172.

    Article  Google Scholar 

  • Soares, C. E. A., L. F. M. Velho, F. A. Lansac-Tôha, C. C. Bonecker, V. L. Landeiro & L. M. Bini, 2015. The likely effects of river impoundment on beta-diversity of a floodplain zooplankton metacommunity. Natureza & Conservação 13: 74–79.

    Article  Google Scholar 

  • Socolar, J. B., J. J. Gilroy, W. E. Kunin & D. P. Edwards, 2016. How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution 31: 67–80.

    Article  Google Scholar 

  • Swenson, J. J., C. E. Carter, J. C. Domec & C. I. Delgado, 2011. Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports. PLoS ONE 6(4): e18875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Veech, J. A. & T. O. Crist, 2007. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography 16: 650–656.

    Article  Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaced framework in functional ecology. Ecology 89: 2290–2301.

  • Villéger, S., G. Grenouillet & S. Brosse, 2013. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography 22: 671–681.

    Article  Google Scholar 

  • Villéger, S., S. Brosse, M. Mouchet, D. Mouillot & M. J. Vanni, 2017. Functional ecology of fish: current approaches and future challenges. Aquatic Sciences 79: 783–801.

    Article  Google Scholar 

  • Wang, J., C. Z. Ding, J. Tao, X. M. Jiang, J. Heino, L. Y. Ding, W. Su, M. L. Chen, K. Zhang & D. M. He, 2021. Damming affects riverine macroinvertebrate metacommunity dynamics: insights from taxonomic and functional beta diversity. Science of the Total Environment 763: 142945.

    Article  CAS  PubMed  Google Scholar 

  • Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Article  Google Scholar 

  • Wiens, J. A., 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397.

    Article  Google Scholar 

  • Winemiller, K. O., P. B. Mcintyre, L. Castello &, et al., 2016. Balancing hydropower and biodiversity in the Amazon. Congo and Mekong. Science 351(6269): 128–129.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., C. R. Peng, S. Huang, J. Wang, X. Xiong & D. H. Li, 2019. The relative role of spatial and environmental processes on seasonal variations of phytoplankton beta diversity along different anthropogenic disturbances of subtropical rivers in China. Environmental Science and Pollution Research 26: 1422–1434.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K., K. Song, Y. D. Pan, L. Z. Wang, L. J. Da & Q. X. Wang, 2017. Metacommunity structure of zooplankton in river networks: Roles of environmental and spatial factors. Ecological Indicators 73: 96–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for granting a scholarships for the authors. Nupelia/UEM, CORIPA, and ICMBio for providing access to infrastructure and sampling facilities.

Funding

This work was supported by the Universal CNPq Project “Upper Paraná River: Longitudinal gradient of environmental variables and aquatic communities in the last non-dammed stretch (between Porto Primavera and Itaipu reservoirs)” (Process 478629/2012-5).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: (BIOR, FALT, and CCB). Methodology, data collection, and laboratory analysis: (BIOR and FdFB); species identification: (BIOR and LdSMB); statistical analyses: (FMLT, FdFB, and BdAA). Writing and original draft preparation: (BIOR); writing, reviewing, and editing of the manuscript: (LdSMB, FMLT, FdFB, BdAA, CCB, and FALT); funding acquisition: (FALT); and supervision: (FALT and CCB). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bárbhara Isabella Oenning Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling editor: Bernadette Pinel-Alloul

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, B.I.O., Braghin, L.d.S.M., Lansac-Tôha, F.M. et al. Environmental heterogeneity increases dissimilarity in zooplankton functional traits along a large Neotropical river. Hydrobiologia 849, 3135–3147 (2022). https://doi.org/10.1007/s10750-022-04917-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04917-6

Keywords

Navigation