Skip to main content
Log in

Ontogenetic dietary shifts of the medusa Rhizostoma pulmo (Cnidaria: Scyphozoa)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Identifying ontogenetic changes in jellyfish diet is fundamental to understand trophic interactions during their life cycle. Scyphomedusae blooms exert major predation pressure on plankton communities, although their role in ecosystems has long been misrepresented. This study assesses seasonal and ontogenetic changes in the diet of the scyphomedusa Rhizostoma pulmo, one of the largest yet overlooked Mediterranean jellyfish. Medusae gut contents (n = 127) were collected during one year in Bages Sigean lagoon, southern France. Results show that the diet composition differs from the availability of prey in the environment with contrasting preferences along ontogeny. Calanoid (70%) and harpacticoid (45.8%) copepods were the most frequent prey and the major carbon contributors for small medusae (bell diameter < 15 cm). In contrast, ciliates (43.5%) were the most frequent prey for large organisms (> 15 cm), which obtain most of their carbon intake from ciliates and fish eggs (20.9%). The overall impact on micro and mesozooplankton showed that small medusae consume 5% of the copepods daily standing stock, while large medusae consumed 8% of ciliates daily standing stock. Our results stress that R. pulmo display different trophic pathways along its life cycle, firstly interacting with the classical food web, and shifting afterwards to a greater interaction with the microbial loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. Data generated in EcoTaxa are available online: https://ecotaxa.obs-vlfr.fr/prj/3279.

Code availability

Not applicable.

References

  • Álvarez-Tello, F. J., J. López-Martínez & D. B. Lluch-Cota, 2016. Trophic spectrum and feeding pattern of cannonball jellyfish Stomolophus meleagris (Agassiz, 1862) from central Gulf of California. Journal of the Marine Biological Association of the United Kingdom 96: 1217–1227.

    Article  Google Scholar 

  • Ballesteros, A., C. Östman, A. Santín, M. Marambio, M. Narda & J.-M. Gili, 2021. Cnidome and morphological features of Pelagia noctiluca (Cnidaria: Scyphozoa) throughout the different life cycle stages. Frontiers in Marine Science 8: 714503.

    Article  Google Scholar 

  • Båmstedt, U. & M. B. Martinussen, 2000. Estimating digestion rate and the problem of individual variability, exemplified by a scyphozoan jellyfish. Journal of Experimental Marine Biology and Ecology 251: 1–15.

    Article  PubMed  Google Scholar 

  • Basso, L., L. Rizzo, M. Marzano, M. Intranuovo, B. Fosso, G. Pesole, S. Piraino & L. Stabili, 2019. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). Science of the Total Environment 692: 305–318.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann, M. P. M. Z., B. D. Postaire, K. Gastrich, M. R. Heithaus, L. A. Hoopes, K. Lyons, Y. P. Papastamatiou, E. V. C. Schneider, B. A. Strickland, B. S. Talwar, D. D. Chapman & J. Bakker, 2021. Elucidating shark diets with DNA metabarcoding from cloacal swabs. Molecular Ecology Resources 21: 1056–1067.

    Article  CAS  Google Scholar 

  • Berry, O., C. Bulman, M. Bunce, M. Coghlan, D. C. Murray & R. D. Ward, 2015. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Marine Ecology Progress Series 540: 167–181.

    Article  CAS  Google Scholar 

  • Bethea, D. M., L. Hale, J. K. Carlson, E. Cortés, C. A. Manire & J. Gelsleichter, 2007. Geographic and ontogenetic variation in the diet and daily ration of the bonnethead shark, Sphyrna tiburo, from the eastern Gulf of Mexico. Marine Biology 152: 1009–1020.

    Article  Google Scholar 

  • Bonnet, D., 2013. Etude du plancton gélatineux sur la façade Méditerranéenne- GELAMED- Programme Liteau (189)—rapport d’activités., http://docplayer.fr/106255915-Gelamed-etude-du-plancton-gelatineux-sur-la-facade-mediterraneenne.html.

  • Bosch-Belmar, M., G. Milisenda, L. Basso, T. K. Doyle, A. Leone & S. Piraino, 2021. Jellyfish impacts on marine aquaculture and fisheries. Reviews in Fisheries Science & Aquaculture 29: 242–259.

    Article  Google Scholar 

  • Brodeur, R., H. Sugisaki & G. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.

    Article  Google Scholar 

  • Cade, B. S. & B. R. Noon, 2003. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1: 412–420.

    Article  Google Scholar 

  • Calder, D. R., 1983. Nematocysts of stages in the life cycle of Stomotophus meleagris, with keys to scyphistomae and ephyrae of some western Atlantic Scyphozoa. Canadian Journal of Zoology 61: 1185–1192.

    Article  Google Scholar 

  • Carr, E. F. & K. A. Pitt, 2008. Behavioural responses of zooplankton to the presence of predatory jellyfish. Journal of Experimental Marine Biology and Ecology 354: 101–110.

    Article  Google Scholar 

  • Carrette, T., P. Alderslade & J. Seymour, 2002. Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp. Toxicon 40: 1547–1551.

    Article  CAS  PubMed  Google Scholar 

  • Cesmat, L., K. Dusserre, A. Fiandrino, & L. Benau, 2012. Etude hydrologique de l’étang de Bages-Sigean. Impact de différents scénarii d’aménagement et de gestion sur les variations de salinité. Agence de l’eau, Conservatoire des Espaces Naturels du Languedoc-Roussillon, Parc Naturel Régional de la Narbonnaise en Méditerranée, Ifremer, France: 84.

  • Chao, A., R. K. Colwell, C.-W. Lin & N. J. Gotelli, 2009. Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90: 1125–1133.

    Article  PubMed  Google Scholar 

  • Costalago, D., J. Navarro, I. Álvarez-Calleja & I. Palomera, 2012. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Marine Ecology Progress Series 460: 169–181.

    Article  Google Scholar 

  • Costello, J. H. & S. P. Colin, 1994. Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Marine Biology 121: 327–334.

    Article  Google Scholar 

  • Costello, J. H. & S. P. Colin, 1995. Flow and feeding by swimming scyphomedusae. Marine Biology 124: 399–406.

    Article  Google Scholar 

  • Cury, P., Y. Shin, B. Planque, J. Durant, J. Fromentin, S. Kramerschadt, N. Stenseth, M. Travers & V. Grimm, 2008. Ecosystem oceanography for global change in fisheries. Trends in Ecology & Evolution 23: 338–346.

    Article  Google Scholar 

  • da Silveira, E. L., N. Semmar, J. E. Cartes, V. M. Tuset, A. Lombarte, E. L. C. Ballester & A. M. Vaz-dos-Santos, 2020. Methods for trophic ecology assessment in fishes: A critical review of stomach analyses. Reviews in Fisheries Science & Aquaculture 28: 71–106.

    Article  Google Scholar 

  • Damian-Serrano, A., S. H. D. Haddock & C. W. Dunn, 2021. The evolution of siphonophore tentilla for specialized prey capture in the open ocean. Proceedings of the National Academy of Sciences National Academy of Sciences 118: 1–9.

    Google Scholar 

  • Dawson, M. N. & W. M. Hamner, 2009. A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia 616: 193–215.

    Article  Google Scholar 

  • Dönmez, M. A. & L. Bat, 2019. Detection of feeding dietary Rhizostoma pulmo (Macri, 1778) in Samsun coasts of the Black Sea, Turkey. Ege Journal of Fisheries and Aquatic Sciences 36: 135–144.

    Article  Google Scholar 

  • Fleming, N. E. C., C. Harrod, J. Newton & J. D. R. Houghton, 2015. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology. PeerJ 3: 1–21.

    Article  Google Scholar 

  • Fuentes, V., I. Straehler-Pohl, D. Atienza, I. Franco, U. Tilves, M. Gentile, M. Acevedo, A. Olariaga & J. M. Gili, 2011. Life cycle of the jellyfish Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution, seasonality and inter-annual variability along the Catalan coast and the Mar Menor (Spain, NW Mediterranean). Marine Biology 158: 2247–2266.

    Article  Google Scholar 

  • Graham, W. M. & R. M. Kroutil, 2001. Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. Journal of Plankton Research 23: 67–74.

    Article  Google Scholar 

  • Graham, W. M., D. L. Martin, D. L. Felder, V. L. Asper, & H. M. Perry, 2003. Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Marine Bioinvasions: Patterns, Processes and Perspectives 53–69.

  • Granéli, E. & J. Turner, 2002. Top-down regulation in ctenophore-copepod-ciliate-diatom-phytoflagellate communities in coastal waters: a mesocosm study. Marine Ecology Progress Series 239: 57–68.

    Article  Google Scholar 

  • Gueroun, S. K. M., J. C. Molinero, S. Piraino & M. N. D. Yahia, 2020. Population dynamics and predatory impact of the alien jellyfish Aurelia solida (Cnidaria, Scyphozoa) in the Bizerte Lagoon (southwestern Mediterranean Sea). Mediterranean Marine Science 21: 22–35.

    Article  Google Scholar 

  • Hays, G. C., T. Bastian, T. K. Doyle, S. Fossette, A. C. Gleiss, M. B. Gravenor, V. J. Hobson, N. E. Humphries, M. K. S. Lilley, N. G. Pade & D. W. Sims, 2012. High activity and Levy searches: jellyfish can search the water column like fish. Proceedings of the Royal Society B: Biological Sciences 279: 465–473.

    Article  PubMed  Google Scholar 

  • Hays, G. C., T. K. Doyle & J. D. R. Houghton, 2018. A paradigm shift in the trophic importance of jellyfish? Trends in Ecology & Evolution 33: 874–884.

    Article  Google Scholar 

  • Hecq, J. H., A. Collignon, & A. Goffart, 2014. Atlas du zooplancton des eaux côtières corses. Travail de synthèse réalisé à la demande de l’Agence de l’Eau RMC, France, http://orbi.ulg.ac.be/handle/2268/168.

  • Hyslop, J. F., 1980. Stomach content analysis-a review on methods and their application. Journal of Fish Biology 17: 411–429.

    Article  Google Scholar 

  • Jiménez-Valverde, A. & J. Hortal, 2003. Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica De Aracnología 8: 151–161.

    Google Scholar 

  • Kikinger, R., 1992. Cotylorhiza tuberculata (Cnidaria: Scyphozoa) - Life history of a stationary population. Marine Ecology 13: 333–362.

    Article  Google Scholar 

  • Krebs, C. J., 1999. Ecological methodology, Benjamin Cummings, New York:

    Google Scholar 

  • Kuplik, Z. & D. L. Angel, 2020. Diet composition and some observations on the feeding ecology of the rhizostome Rhopilema nomadica in Israeli coastal waters. Journal of the Marine Biological Association of the United Kingdom 100: 681–689.

    Article  Google Scholar 

  • Langton, R. W., 1982. Diet overlap between Atlantic cod, Gadus morhua, silver hake, Merluccius bilinearis, and fifteen other northwest Atlantic finfish. Fishery Bulletin 80: 16.

    Google Scholar 

  • Larson, R. J., 1991. Diet, prey selection and daily ration of Stomolophus meleagris, a filter-feeding scyphomedusa from the NE Gulf of Mexico. Estuarine, Coastal and Shelf Science 32: 511–525.

    Article  Google Scholar 

  • Lebrato, M., M. Pahlow, J. R. Frost, M. Küter, P. Jesus Mendes, J. Molinero & A. Oschlies, 2019. Sinking of gelatinous zooplankton biomass increases deep carbon transfer efficiency globally. Global Biogeochemical Cycles 33: 1764–1783.

    Article  CAS  Google Scholar 

  • Leoni, V., D. Bonnet, E. Ramírez-Romero & J. C. Molinero, 2021a. Biogeography and phenology of the jellyfish Rhizostoma pulmo (Cnidaria: Scyphozoa) in southern European seas. Global Ecology and Biogeography 30: 622–639.

    Article  Google Scholar 

  • Leoni, V., J. C. Molinero, M. Meffre & D. Bonnet, 2021b. Variability of growth rates and thermohaline niches of Rhizostoma pulmo’s pelagic stages (Cnidaria: Scyphozoa). Marine Biology 168: 107.

    Article  Google Scholar 

  • Lilley, M. K. S., J. D. R. Houghton & G. C. Hays, 2009. Distribution, extent of inter-annual variability and diet of the bloom-forming jellyfish Rhizostoma in European waters. Journal of the Marine Biological Association of the United Kingdom 89: 39.

    Article  Google Scholar 

  • Lucas, C. H., D. O. B. Jones, C. J. Hollyhead, R. H. Condon, C. M. Duarte, W. M. Graham, K. L. Robinson, K. A. Pitt, M. Schildhauer & J. Regetz, 2014. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Global Ecology and Biogeography 23: 701–714.

    Article  Google Scholar 

  • Marques, R., D. Bonnet, C. Carré, C. Roques & A. M. Darnaude, 2021. Trophic ecology of a blooming jellyfish (Aurelia coerulea) in a Mediterranean coastal lagoon. Limnology and Oceanography 66: 141–157.

    Article  CAS  Google Scholar 

  • Milisenda, G., S. Rossi, S. Vizzini, V. L. Fuentes, J. E. Purcell, U. Tilves & S. Piraino, 2018. Seasonal variability of diet and trophic level of the gelatinous predator Pelagia noctiluca (Scyphozoa). Scientific Reports 8: 12140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moore, M. V., B. T. De Stasio, K. N. Huizenga & E. A. Silow, 2019. Trophic coupling of the microbial and the classical food web in Lake Baikal, Siberia. Freshwater Biology 64: 138–151.

    Article  Google Scholar 

  • Nagata, R. M. & A. C. Morandini, 2018. Diet, prey selection, and individual feeding rates of the jellyfish Lychnorhiza lucerna (Scyphozoa, Rhizostomeae). Marine Biology 165: 187.

    Article  CAS  Google Scholar 

  • Nagata, R., A. Morandini, S. Colin, A. Migotto & J. Costello, 2016. Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna. Marine Ecology Progress Series 557: 145–159.

    Article  Google Scholar 

  • Nagata, R., M. Moreira, C. Pimentel & A. Morandini, 2015. Food web characterization based on δ15N and δ13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Marine Ecology Progress Series 519: 13–27.

    Article  CAS  Google Scholar 

  • Nastav, B., M. Malej, A. Malej Jr. & A. Malej, 2013. Is it possible to determine the economic impact of jellyfish outbreaks on fisheries? A case study—Slovenia. Mediterranean Marine Science 14: 214.

    Article  Google Scholar 

  • Oba, A., M. Hidaka & S. Iwanaga, 2004. Nematocyst composition of the cubomedusan Chiropsalmus quadrigatus changes with growth. Hydrobiologia 530(531): 173–177.

    Google Scholar 

  • Olson, M. H., 1996. Ontogenetic niche shifts in Largemouth Bass: Variability and consequences for first-year growth. Ecology 77: 179–190.

    Article  Google Scholar 

  • Padilla-Serrato, J. G., J. López-Martínez, A. Acevedo-Cervantes, E. Alcántara-Razo, & C. H. Rábago-Quiroz, 2013. Feeding of the scyphomedusa Stomolophus meleagris in the coastal lagoon Las Guásimas, northwest Mexico. 23: 9.

  • Pauly, D., W. M. Graham, S. Libralato, L. Morissette, & M. L. D. Palomares (eds), 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616: 67–85.

  • Pérez-Ruzafa, A., J. Gilabert, J. M. Gutiérrez, A. I. Fernández, C. Marcos, & S. Sabah, 2002. Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 359–369.

  • Pitt, K. A. & C. H. Lucas (eds), 2013. Jellyfish blooms. Springer, Dordrecht.

    Google Scholar 

  • Pitt, K. A., R. M. Connolly & J. E. Purcell, 2009. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Jellyfish Blooms: Causes, Consequences, and Recent Advances 616: 119–132.

    CAS  Google Scholar 

  • PNRNM, 2018. Réhabilitation et valorisation de l’étang de Bages-Sigean. Les Zones Humides. , http://www.zones-humides.org/agir/retours-experiences/rehabilitation-et-valorisation-de-l039etang-de-bages-sigean.

  • Purcell, J., 1992. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay, USA. Marine Ecology Progress Series 87: 65–76.

    Article  Google Scholar 

  • Purcell, J. E., 1984. The functions of nematocysts in prey capture by epipelagic siphonophores (Coelenterata, Hydrozoa). The Biological Bulletin 166: 310–327.

    Article  Google Scholar 

  • Purcell, J. E., 1997. Pelagic cnidarians and ctenophores as predators: Selective predation, feeding rates, and effects on prey populations. Annales De L’institut Océanographique 73: 125–137.

    Google Scholar 

  • Purcell, J. E., 2003. Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Marine Ecological Progress Series 16.

  • Purcell, J. E., 2009. Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia 616: 23–50.

    Article  Google Scholar 

  • Purcell, J. E., 2018. Of jellyfish, fish, and humans. ICES Journal of Marine Science 75: 1235–1244.

    Article  Google Scholar 

  • Purcell, J. E., & C. E. Mills, 1988. The correlation between nematocyst types and diets in pelagic Hydrozoa In Hessinger, D. A., & H. M. Lenhoff (eds), The Biology of Nematocysts. Academic Press: 464–483.

  • Purcell, J. E., V. Fuentes, D. Atienza, U. Tilves, D. Astorga, M. Kawahara & G. C. Hays, 2010. Use of respiration rates of scyphozoan jellyfish to estimate their effects on the food web. Hydrobiologia 645: 135–152.

    Article  CAS  Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Regula, C., S. Colin, J. Costello & H. Kordula, 2009. Prey selection mechanism of ambush-foraging hydromedusae. Marine Ecology Progress Series 374: 135–144.

    Article  Google Scholar 

  • Robinson, K. & W. Graham, 2014. Warming of subtropical coastal waters accelerates Mnemiopsis leidyi growth and alters timing of spring ctenophore blooms. Marine Ecology Progress Series 502: 105–115.

    Article  Google Scholar 

  • Rosa, S., M. Pansera, A. Granata & L. Guglielmo, 2013. Interannual variability, growth, reproduction and feeding of Pelagia noctiluca (Cnidaria: Scyphozoa) in the Straits of Messina (Central Mediterranean Sea): Linkages with temperature and diet. Journal of Marine Systems 111–112: 97–107.

    Article  Google Scholar 

  • Rossi, J. P., 2011. rich: an R package to analyse species richness. Diversity 3: 112–120.

    Article  Google Scholar 

  • Sánchez-Hernández, J., A. D. Nunn, C. E. Adams & P.-A. Amundsen, 2019. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models: ontogenetic dietary shifts. Biological Reviews 94: 539–554.

    Article  PubMed  Google Scholar 

  • Sieracki, C., M. Sieracki & C. Yentsch, 1998. An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series 168: 285–296.

    Article  Google Scholar 

  • Strauss, R. E., 1979. Reliability estimates for Ivlev’s electivity index, the forage ratio, and a proposed linear index of food selection. Transactions of the American Fisheries Society 108: 344–352.

    Article  Google Scholar 

  • Syazwan, W. M., A.Y.-H. Then, V. C. Chong & M. Rizman-Idid, 2021. Trophic ecology of a tropical scyphozoan community in coastal waters: Insights from stomach content and stable isotope analyses. Continental Shelf Research 225: 104481.

    Article  Google Scholar 

  • Trégouboff, G., & M. Rose, 1978. Manuel de planctonologie méditerranéenne. France.

  • Turk, V., D. Lučić, V. Flander-Putrle & A. Malej, 2008. Feeding of Aurelia sp. (Scyphozoa) and links to the microbial food web. Marine Ecology 29: 495–505.

    Article  CAS  Google Scholar 

  • Uye, S., 1982. Length-weight relationships of important zooplankton from the Inland Sea of Japan. Journal of the Oceanographical Society of Japan 38: 149–158.

    Article  Google Scholar 

  • Uye, S., 2008. Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton and Benthos Research 3: 125–131.

  • Vales, D. G., F. Saporiti, L. Cardona, L. R. De Oliveira, R. A. Dos Santos, E. R. Secchi, A. Aguilar & E. A. Crespo, 2014. Intensive fishing has not forced dietary change in the South American fur seal Arctophoca (=Arctocephalus) australis off Río de la Plata and adjoining areas. Aquatic Conservation: Marine and Freshwater Ecosystems 24: 745–759.

    Article  Google Scholar 

  • Vélez-Rubio, G. M., L. Cardona, M. López-Mendilaharsu, G. Martínez Souza, A. Carranza, D. González-Paredes & J. Tomás, 2016. Ontogenetic dietary changes of green turtles (Chelonia mydas) in the temperate southwestern Atlantic. Marine Biology 163: 57.

    Article  CAS  Google Scholar 

  • Wagner, Z., J. H. Costello & S. P. Colin, 2020. Fluid and Predator-Prey Interactions of Scyphomedusae Fed Calanoid Copepods. Fluids 5: 60.

    Article  Google Scholar 

  • Wang, P., F. Zhang, M. Liu, S. Sun & H. Xian, 2020. Isotopic evidence for size-based dietary shifts in the jellyfish Cyanea nozakii in the northern East China Sea. Journal of Plankton Research 42: 689–701.

    CAS  Google Scholar 

  • West, E. J., K. A. Pitt, D. T. Welsh, K. Koop & D. Rissik, 2009. Top-down and bottom-up influences of jellyfish on primary productivity and planktonic assemblages. Limnology and Oceanography 54: 2058–2071.

    Article  Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer, Berlin. https://www.springer.com/gp/book/9783319242750.

Download references

Acknowledgements

This study was conducted as part of the Ph.D. dissertation of V.L. and was supported by the National Agency for Research and Innovation, ANII, Uruguay (code POS_CFRA_2017_1_147109). Part of the analyses were financed by EMBRC-France, a program managed by the ANR within the “Investing for the future program” under the reference ANR-10-INBS-02. The authors acknowledge the funding support of the French ANR project CIGOEF (grant ANR-17-CE32-0008-01), and the support of LabEx CeMEB, an ANR "Investissements d'avenir" program (ANR‐10‐ LABX‐04‐01). We acknowledge Sun Hee Lee, Ruben Tournier, and Raquel Marques for their assistance during fieldwork. We greatly appreciate the advice from Renato M. Nagata for laboratory manipulations and the advice from Alejandro Ariza for graphic designs. We are grateful to the kitesurf center ‘Narbonne Kite Passion’ and local fishermen for the logistic support, in particular to the skipper Stéphane Marin, for his support on board and for sharing his expertise on the lagoon. We would like to thank the reviewers and the associated editor of the previous version of this manuscript, whose comments greatly improved the quality of the present manuscript.

Funding

This study was supported by the National Agency for Research and Innovation, ANII, Uruguay (code POS_CFRA_2017_1_147109). Part of the analyses were financially supported by EMBRC-France, a program managed by the ANR within the “Investing for the future program” under the reference ANR-10-INBS-02.

Author information

Authors and Affiliations

Authors

Contributions

V.L., J.C.M. and D.B. designed the study. V.L., M.M., D.B., S.C. and J.C.M. performed field sampling. V.L., S.C. and M.M. performed laboratory analyses. S.C. took pictures and measurements of prey items. V.L. processed the samples in FlowCam and V.L. and S.C. classified the items on EcoTaxa. V.L. analyzed the data and wrote the first draft of the manuscript. V.L., J.C.M. and D.B. interpreted the results. J.C.M. and D.B. made critical revisions and contributed to writing the manuscript.

Corresponding author

Correspondence to Valentina Leoni.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest.

Ethical approval

The jellyfish Rhizostoma pulmo is a cnidarian (invertebrate) that is not an endangered or protected species and therefore, no permit was needed for sampling. Sampling and all field studies were realized in agreement with fishermen of the area and following the directives of the Natural Park.

Additional information

Handling Editor: Jörg Dutz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leoni, V., Molinero, J.C., Crochemore, S. et al. Ontogenetic dietary shifts of the medusa Rhizostoma pulmo (Cnidaria: Scyphozoa). Hydrobiologia 849, 2933–2948 (2022). https://doi.org/10.1007/s10750-022-04903-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04903-y

Keywords

Navigation